Page 237 - Computational Retinal Image Analysis
P. 237

234    CHAPTER 12  Diabetic retinopathy and maculopathy lesions




                         bands of wavelet transformed images. A genetic algorithm was used to find the
                         optimal wavelet. Köse et al. [55] combined inverse segmentation method with
                         Naive Bayes classifier to detect both BL and RL. Figueiredo et al. [56] extracted
                         a number of multiscale features based on Hessian analysis and wavelet transform.
                         Subsequently, they devised a number of lesion-specialized binary classifiers to
                         find all DR lesions.



                          Table 1  Performance comparison of lesion detection methods.
                                                                                Performance
                          Method          Method type    Task        Dataset      metric
                          Chudzik et al. [20]  Deep learning  MA detection  E-Ophtha [57]  FROC: 0.562
                          van Grinsven et al.   Deep learning  HM   Messidor [58]  SN: 0.94, SP:
                          [46]                        detection                0.87
                          Orlando et al. [47]  Deep learning  RL detection  DIARETDB1   FROC: 0.4874
                                                                  [59]
                          Walter et al. [23]  Morphology  MA detection  Private  SN: 0.89
                          Harangi and     Morphology  EX detection  DIARETDB1  SN: 0.75
                          Hajdu [60]
                          Xiaohui and     Morphology  BL detection  Private    SN: 0.97, SP:
                          Chutatape [26]                                       0.96
                          Niemeijer et al.   Machine   BL detection  Private   SN: 0.96, SP:
                          [27]            learning                             0.86
                          Niemeijer et al.   Machine   BL detection  Private   AUC: 0.953
                          [27]            learning
                          Veiga et al. [29]  Machine   MA detection  E-Ophtha  FROC: 0.328
                                          learning
                          Frame et al. [36]  Region   MA detection  Private    SN: 0.84,
                                          growing                              SP:0.85
                          Li and Chutatape   Region   BL detection  Private    SN: 1.00,
                          [38]            growing                              SP:0.71
                          Sinthanayothin   Region     RL detection  Private    SN: 0.78,
                          et al. [39]     growing                              SP:0.89
                          Sánchez et al. [45]  Thresholding  RL detection  HEI-MED [61]  MA SN: 0.84,
                                                                               HM SN: 0.88
                          Pereira et al. [41]  Thresholding  EX detection  HEI-MED  SN: 0.81,
                                                                               SN:0.99
                          Zhang et al. [40]  Thresholding  MA detection  ROC [62]  FROC: 0.20
                          Figueiredo et al.   Miscellaneous  BL detection  Private  SN: 0.90, SP:
                          [56]                                                 0.97
                          Javidi et al. [53]  Miscellaneous  MA detection  ROC  FROC: 0.27
                          Köse et al. [55]  Miscellaneous  HM     Private      SN: 0.93, SP:
                                                      detection                0.98
                          Notes: FROC, free-response receiver operatic characteristic; SN, sensitivity; SP, specificity; AUC, area
                          under the receiver operatic characteristic curve.
   232   233   234   235   236   237   238   239   240   241   242