Page 297 - Computational Retinal Image Analysis
P. 297
References 295
deep learning and graph search, Biomed. Opt. Express 8 (5) (2017) 2732–2744, https://
doi.org/10.1364/BOE.8.002732.
[33] X. Chen, M. Niemeijer, L. Zhang, K. Lee, M.D. Abramoff, M. Sonka, Three-dimensional
segmentation of fluid-associated abnormalities in retinal OCT: probability constrained
graph-search-graph-cut, IEEE Trans. Med. Imaging 31 (8) (2012) 1521–1531.
[34] X. Xu, K. Lee, L. Zhang, M. Sonka, M.D. Abramoff, Stratified sampling Voxel classifi-
cation for segmentation of intraretinal and subretinal fluid in longitudinal clinical OCT
data, IEEE Trans. Med. Imaging 34 (7) (2015) 1616–1623.
[35] J. Wang, M. Zhang, A.D. Pechauer, L. Liu, T.S. Hwang, D.J. Wilson, D. Li, Y. Jia,
Automated volumetric segmentation of retinal fluid on optical coherence tomog-
raphy, Biomed. Opt. Express 7 (4) (2016) 1577–1589, https://doi.org/10.1364/
BOE.7.001577.
[36] J. Novosel, K.A. Vermeer, J.H. de Jong, Z. Wang, L.J. van Vliet, Joint segmentation
of retinal layers and focal lesions in 3-D OCT data of topologically disrupted reti-
nas, IEEE Trans. Med. Imaging 36 (6) (2017) 1276–1286, https://doi.org/10.1109/
TMI.2017.2666045.
[37] A. Montuoro, S.M. Waldstein, B.S. Gerendas, U. Schmidt-Erfurth, Joint retinal layer and
fluid segmentation in OCT scans of eyes with severe macular edema using unsupervised
representation and auto-context, Biomed. Opt. Express 8 (3) (2017) 182–190, https://doi.
org/10.1364/BOE.8.001874.
[38] Z. Tu, X. Bai, Auto-context and its application to high-level vision tasks and 3D brain
image segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 32 (10) (2010) 1744–1757.
[39] F. Shi, X. Chen, H. Zhao, W. Zhu, D. Xiang, E. Gao, M. Sonka, H. Chen, Automated 3-D
retinal layer segmentation of macular optical coherence tomography images with serous
pigment epithelial detachments, IEEE Trans. Med. Imaging 34 (2) (2015) 441–452.
[40] Z. Sun, H. Chen, F. Shi, L. Wang, W. Zhu, D. Xiang, C. Yan, L. Li, X. Chen, An auto-
mated framework for 3D serous pigment epithelium detachment segmentation in SD-
OCT images, Sci. Rep. 6 (2016), https://doi.org/10.1038/srep21739.
[41] M. Wu, W. Fan, Q. Chen, Z. Du, X. Li, S. Yuan, H. Park, Three-dimensional continuous
max flow optimization-based serous retinal detachment segmentation in SD-OCT for
central serous chorioretinopathy, Biomed. Opt. Express 8 (9) (2017) 4257, https://doi.
org/10.1364/BOE.8.004257.
[42] M. Wu, Q. Chen, X. He, P. Li, W. Fan, S. Yuan, H. Park, Automatic subretinal fluid seg-
mentation of retinal SD-OCT images with neurosensory retinal detachment guided by
enface fundus imaging, IEEE Trans. Biomed. Eng. 65 (1) (2018) 87–95.
[43] G. Quellec, K. Lee, M. Dolejsi, M.K. Garvin, M.D. Abramoff, M. Sonka, Three-
dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-
OCT of the macula, IEEE Trans. Med. Imaging 29 (6) (2010) 1321–1330.
[44] D.S. Kermany, M. Goldbaum, W. Cai, C.C.S. Valentim, H. Liang, S.L. Baxter,
A. McKeown, G. Yang, X. Wu, F. Yan, J. Dong, M.K. Prasadha, J. Pei, M.Y.L. Ting,
J. Zhu, C. Li, S. Hewett, J. Dong, I. Ziyar, A. Shi, R. Zhang, L. Zheng, R. Hou, W. Shi,
X. Fu, Y. Duan, V.A.N. Huu, C. Wen, E.D. Zhang, C.L. Zhang, O. Li, X. Wang,
M.A. Singer, X. Sun, J. Xu, A. Tafreshi, M.A. Lewis, H. Xia, K. Zhang, Identifying
medical diagnoses and treatable diseases by image-based deep learning, Cell 172 (5)
(2018). 1122–1131.e9.
[45] C.S. Lee, D.M. Baughman, A.Y. Lee, Deep learning is effective for classifying normal
versus age-related macular degeneration OCT images, Ophthalmol. Retina 1 (4) (2017)
322–327, https://doi.org/10.1016/J.ORET.2016.12.009.