Page 297 - Computational Retinal Image Analysis
P. 297

References  295




                      deep learning and graph search, Biomed. Opt. Express 8 (5) (2017) 2732–2744, https://
                      doi.org/10.1364/BOE.8.002732.
                   [33]  X. Chen, M. Niemeijer, L. Zhang, K. Lee, M.D. Abramoff, M. Sonka, Three-dimensional
                      segmentation of fluid-associated abnormalities in retinal OCT: probability constrained
                      graph-search-graph-cut, IEEE Trans. Med. Imaging 31 (8) (2012) 1521–1531.
                   [34]  X. Xu, K. Lee, L. Zhang, M. Sonka, M.D. Abramoff, Stratified sampling Voxel classifi-
                      cation for segmentation of intraretinal and subretinal fluid in longitudinal clinical OCT
                      data, IEEE Trans. Med. Imaging 34 (7) (2015) 1616–1623.
                    [35]  J. Wang, M. Zhang, A.D. Pechauer, L. Liu, T.S. Hwang, D.J. Wilson, D. Li, Y. Jia,
                      Automated volumetric segmentation of retinal fluid on optical coherence tomog-
                      raphy, Biomed. Opt. Express 7 (4) (2016) 1577–1589,  https://doi.org/10.1364/
                      BOE.7.001577.
                   [36]  J. Novosel, K.A. Vermeer, J.H. de Jong, Z. Wang, L.J. van Vliet, Joint segmentation
                      of retinal layers and focal lesions in 3-D OCT data of topologically disrupted reti-
                      nas, IEEE  Trans. Med. Imaging 36 (6) (2017) 1276–1286,  https://doi.org/10.1109/
                      TMI.2017.2666045.
                   [37]  A. Montuoro, S.M. Waldstein, B.S. Gerendas, U. Schmidt-Erfurth, Joint retinal layer and
                      fluid segmentation in OCT scans of eyes with severe macular edema using unsupervised
                      representation and auto-context, Biomed. Opt. Express 8 (3) (2017) 182–190, https://doi.
                      org/10.1364/BOE.8.001874.
                   [38]  Z. Tu, X. Bai, Auto-context and its application to high-level vision tasks and 3D brain
                      image segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 32 (10) (2010) 1744–1757.
                   [39]  F. Shi, X. Chen, H. Zhao, W. Zhu, D. Xiang, E. Gao, M. Sonka, H. Chen, Automated 3-D
                      retinal layer segmentation of macular optical coherence tomography images with serous
                      pigment epithelial detachments, IEEE Trans. Med. Imaging 34 (2) (2015) 441–452.
                   [40]  Z. Sun, H. Chen, F. Shi, L. Wang, W. Zhu, D. Xiang, C. Yan, L. Li, X. Chen, An auto-
                      mated framework for 3D serous pigment epithelium detachment segmentation in SD-
                      OCT images, Sci. Rep. 6 (2016), https://doi.org/10.1038/srep21739.
                   [41]  M. Wu, W. Fan, Q. Chen, Z. Du, X. Li, S. Yuan, H. Park, Three-dimensional continuous
                      max flow optimization-based serous retinal detachment segmentation in SD-OCT for
                      central serous chorioretinopathy, Biomed. Opt. Express 8 (9) (2017) 4257, https://doi.
                      org/10.1364/BOE.8.004257.
                   [42]  M. Wu, Q. Chen, X. He, P. Li, W. Fan, S. Yuan, H. Park, Automatic subretinal fluid seg-
                      mentation of retinal SD-OCT images with neurosensory retinal detachment guided by
                      enface fundus imaging, IEEE Trans. Biomed. Eng. 65 (1) (2018) 87–95.
                   [43]  G.  Quellec, K.  Lee, M.  Dolejsi, M.K.  Garvin, M.D.  Abramoff, M.  Sonka,  Three-
                      dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-
                      OCT of the macula, IEEE Trans. Med. Imaging 29 (6) (2010) 1321–1330.
                   [44]  D.S.  Kermany, M.  Goldbaum,  W.  Cai, C.C.S.  Valentim, H.  Liang, S.L.  Baxter,
                      A. McKeown, G. Yang, X. Wu, F. Yan, J. Dong, M.K. Prasadha, J. Pei, M.Y.L. Ting,
                      J. Zhu, C. Li, S. Hewett, J. Dong, I. Ziyar, A. Shi, R. Zhang, L. Zheng, R. Hou, W. Shi,
                      X.  Fu, Y.  Duan,  V.A.N.  Huu, C.  Wen, E.D.  Zhang, C.L.  Zhang, O.  Li, X.  Wang,
                      M.A. Singer, X. Sun, J. Xu, A. Tafreshi, M.A. Lewis, H. Xia, K. Zhang, Identifying
                      medical diagnoses and treatable diseases by image-based deep learning, Cell 172 (5)
                      (2018). 1122–1131.e9.
                   [45]  C.S. Lee, D.M. Baughman, A.Y. Lee, Deep learning is effective for classifying normal
                      versus age-related macular degeneration OCT images, Ophthalmol. Retina 1 (4) (2017)
                      322–327, https://doi.org/10.1016/J.ORET.2016.12.009.
   292   293   294   295   296   297   298   299   300   301   302