Page 298 - Computational Retinal Image Analysis
P. 298
296 CHAPTER 14 OCT fluid detection and quantification
[46] P.L. Vidal, J. de Moura, J. Novo, M.G. Penedo, M. Ortega, Intraretinal fluid identifi-
cation via enhanced maps using optical coherence tomography images, Biomed. Opt.
Express 9 (10) (2018) 4730–4754, https://doi.org/10.1364/BOE.9.004730.
[47] P. Seeböck, S.M. Waldstein, S. Klimscha, H. Bogunovic, T. Schlegl, B.S. Gerendas,
R. Donner, U. Schmidt-Erfurth, G. Langs, Unsupervised identification of disease marker
candidates in retinal OCT imaging data, IEEE Trans. Med. Imaging 38 (4) (2019)
1037–1047, https://doi.org/10.1109/TMI.2018.2877080.
[48] P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing ro-
bust features with denoising autoencoders, Proceedings of the 25th International
Conference on Machine learning (ICML), 2008, pp. 1096–1103, https://doi.
org/10.1145/1390156.1390294.
[49] T. Schlegl, P. Seeböck, S.M. Waldstein, U. Schmidt-Erfurth, G. Langs, Unsupervised
anomaly detection with generative adversarial networks to guide marker discovery,
Proc. Int. Conf. Inform. Process. Med. Imaging (IPMI), vol. 10265, LNCS, Springer,
Cham, 2017, pp. 146–147.
[50] I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, Y. Bengio, Generative adversarial networks, Proc. Adv. Neural Inform.
Process. Syst. (NIPS), 2014.
[51] J. Wu, A.-M. Philip, D. Podkowinski, B.S. Gerendas, G. Langs, C. Simader,
S.M. Waldstein, U. Schmidt-Erfurth, Multivendor spectral-domain optical coherence to-
mography dataset, observer annotation performance evaluation, and standardized evalua-
tion framework for intraretinal cystoid fluid segmentation, J. Ophthalmol. (2016), https://
doi.org/10.1155/2016/3898750.
[52] H. Bogunović, F. Venhuizen, S. Klimscha, S. Apostolopoulos, A. Bab-Hadiashar,
U. Bagci, M.F. Beg, L. Bekalo, Q. Chen, C. Ciller, K. Gopinath, A.K. Gostar, K. Jeon,
Z. Ji, S.H. Kang, D.D. Koozekanani, D. Lu, D. Morley, K.K. Parhi, H.S. Park, A. Rashno,
M. Sarunic, S. Shaikh, J. Sivaswamy, R. Tennakoon, S. Yadav, S.D. Zanet, S.M. Waldstein,
B.S. Gerendas, C. Klaver, C.I. Sánchez, U. Schmidt-Erfurth, RETOUCH—the retinal
OCT fluid detection and segmentation benchmark and challenge, IEEE Trans. Med.
Imaging 38 (8) (2019) 1858–1874, https://doi.org/10.1109/TMI.2019.2901398.
[53] U. Chakravarthy, D. Goldenberg, G. Young, M. Havilio, O. Rafaeli, G. Benyamini,
A. Loewenstein, Automated identification of lesion activity in neovascular age-related
macular degeneration, Ophthalmology 123 (8) (2016) 1731–1736.
[54] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A.C. Berg, L. Fei-Fei, ImageNet large scale visual recogni-
tion challenge, Int. J. Comput. Vis. 115 (3) (2015) 211–252, https://doi.org/10.1007/
s11263-015-0816-y.
[55] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception ar-
chitecture for computer vision, Proc. IEEE Int. Conf. Comput. Vis. Pattern Recogn.
(CVPR), 2016, pp. 2818–2826, https://doi.org/10.1109/CVPR.2016.308.
[56] M. Treder, J.L. Lauermann, N. Eter, Automated detection of exudative age-related macu-
lar degeneration in spectral domain optical coherence tomography using deep learning,
Graefe’s Arch. Clin. Exp. Ophthalmol. 256 (2) (2018) 259–265, https://doi.org/10.1007/
s00417-017-3850-3.
[57] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image
recognition, http://arxiv.org/abs/1409.1556, 2014.
[58] P. Prahs, V. Radeck, C. Mayer, Y. Cvetkov, N. Cvetkova, H. Helbig, D. Märker, OCT-
based deep learning algorithm for the evaluation of treatment indication with anti- vascular