Page 300 - Computational Retinal Image Analysis
P. 300
298 CHAPTER 14 OCT fluid detection and quantification
[73] W.-D. Vogl, S.M. Waldstein, B.S. Gerendas, U. Schmidt-Erfurth, G. Langs, Predicting
macular edema recurrence from spatio-temporal signatures in optical coherence to-
mography images, IEEE Trans. Med. Imaging 36 (9) (2017) 1773–1783, https://doi.
org/10.1109/TMI.2017.2700213.
[74] G. Verbeke, G. Molenberghs, Linear Mixed Models for Longitudinal Data, Springer-
Verlag, New York, 2009.
[75] B. Efron, R.J. Tibshirani, An Introduction to the Bootstrap, CRC Press, Boca Raton, FL,
1994.
2
[76] S. Nakagawa, H. Schielzeth, A general and simple method for obtaining R from general-
ized linear mixed-effects models, Methods Ecol. Evol. 4 (2) (2013) 133–142.
[77] P.C.D. Johnson, Extension of Nakagawa & Schielzeth’s R2GLMM to random slopes
models, Methods Ecol. Evol. 5 (9) (2014) 944–946.
[78] D. Bates, M. Mächler, B. Bolker, S. Walker, Fitting linear mixed-effects models using
Lme4, J. Stat. Softw. 67 (1) (2015) 1–48, https://doi.org/10.18637/jss.v067.i01.
[79] G.K. Robinson, That BLUP is a good thing: the estimation of random effects, Stat. Sci.
6 (1991) 15–32.
[80] A. Rokem, Y. Wu, A.Y. Lee, Assessment of the need for separate test set and num-
ber of medical images necessary for deep learning: a sub-sampling study, https://doi.
org/10.1101/196659, 2017.
[81] J. Fujimoto, E. Swanson, The development, commercialization, and impact of optical co-
herence tomography, Invest. Ophthalmol. Vis. Sci. 57 (9) (2016), https://doi.org/10.1167/
iovs.16-19963.