Page 295 - Computational Retinal Image Analysis
P. 295
References 293
[6] G.J. Jaffe, D.F. Martin, C.A. Toth, E. Daniel, M.G. Maguire, G.-S. Ying, J.E. Grunwald,
J. Huang, Comparison of Age-Related Macular Degeneration Treatments Trials Research
Group, Macular morphology and visual acuity in the comparison of age-related macular
degeneration treatments trials, Ophthalmology 120 (9) (2013) 1860–1870, https://doi.
org/10.1016/j.ophtha.2013.01.073.
[7] S.M. Waldstein, A.-M. Philip, R. Leitner, C. Simader, G. Langs, B.S. Gerendas,
U. Schmidt-Erfurth, Correlation of 3-dimensionally quantified intraretinal and subret-
inal fluid with visual acuity in neovascular age-related macular degeneration, JAMA
Ophthalmol. 134 (2) (2016) 182–190.
[8] G. Querques, F. Coscas, R. Forte, N. Massamba, M. Sterkers, E.H. Souied, Cystoid mac-
ular degeneration in exudative age-related macular degeneration, Am. J. Ophthalmol.
152 (1) (2011), https://doi.org/10.1016/j.ajo.2011.01.027. 100–107.e2.
[9] S.A. Zweifel, M. Engelbert, K. Laud, R. Margolis, R.F. Spaide, K.B. Freund, Outer
retinal tubulation, Arch. Ophthalmol. 127 (12) (2009) 1596, https://doi.org/10.1001/
archophthalmol.2009.326.
[10] S. Klimscha, S.M. Waldstein, T. Schlegl, H. Bogunović, A. Sadeghipour, A.M. Philip,
D. Podkowinski, E. Pablik, L. Zhang, M.D. Abramoff, M. Sonka, B.S. Gerendas,
U. Schmidt-Erfurth, Spatial correspondence between intraretinal fluid, subretinal
fluid, and pigment epithelial detachment in neovascular age-related macular degenera-
tion. Invest. Ophthalmol. Vis. Sci. 58 (10) (2017) 4039–4048, https://doi.org/10.1167/
iovs.16-20201.
[11] S.M. Waldstein, C. Simader, G. Staurenghi, N.V. Chong, P. Mitchell, G.J. Jaffe,
C. Lu, T.A. Katz, U. Schmidt-Erfurth, Morphology and visual acuity in Aflibercept
and Ranibizumab therapy for neovascular age-related macular degeneration in the
VIEW trials, Ophthalmology 123 (7) (2016) 1521–1529, https://doi.org/10.1016/j.
ophtha.2016.03.037.
[12] J.J. Arnold, C.M. Markey, N.P. Kurstjens, R.H. Guymer, The role of sub-retinal
fluid in determining treatment outcomes in patients with neovascular age-related
macular degeneration—a phase IV randomised clinical trial with ranibizumab:
the FLUID study, BMC Ophthalmol. 16 (1) (2016) 31, https://doi.org/10.1186/
s12886-016-0207-3.
[13] M.D. Abramoff, M.K. Garvin, M. Sonka, Retinal imaging and image analysis, IEEE
Rev. Biomed. Eng. 3 (2010) 169–208.
[14] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convo-
lutional neural networks, Proc. Adv. Neural Inform. Process. Syst. (NIPS), 2012, pp.
1097–1105.
[15] T. Schlegl, S.M. Waldstein, W.-D. Vogl, U. Schmidt-Erfurth, G. Langs, Predicting se-
mantic descriptions from medical images with convolutional neural networks, in: Lect.
Notes Comput. Sci., Proc. Int. Conf. Inform. Process. Med. Imaging (IPMI), vol. 9123,
2015, pp. 437–448.
[16] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmenta-
tion, Proc. IEEE Int. Conf. Comput. Vis. Pattern Recogn. (CVPR), 2015, pp. 3431–3440,
https://doi.org/10.1109/CVPR.2015.7298965.
[17] H. Noh, S. Hong, B. Han, Learning deconvolution network for semantic segmentation,
in: Proc. IEEE Int. Conf. Comput. Vis. (ICCV), 2015, pp. 1520–1528.
[18] V. Badrinarayanan, A. Kendall, R. Cipolla, SegNet: a deep convolutional encoder-
decoder architecture for image segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 39
(12) (2017) 2481–2495, https://doi.org/10.1109/TPAMI.2016.2644615.