Page 295 - Computational Retinal Image Analysis
P. 295

References  293




                    [6]  G.J. Jaffe, D.F. Martin, C.A. Toth, E. Daniel, M.G. Maguire, G.-S. Ying, J.E. Grunwald,
                      J. Huang, Comparison of Age-Related Macular Degeneration Treatments Trials Research
                      Group, Macular morphology and visual acuity in the comparison of age-related macular
                      degeneration treatments trials, Ophthalmology 120 (9) (2013) 1860–1870, https://doi.
                      org/10.1016/j.ophtha.2013.01.073.
                    [7]  S.M.  Waldstein,  A.-M.  Philip,  R.  Leitner,  C.  Simader,  G.  Langs,  B.S.  Gerendas,
                      U. Schmidt-Erfurth, Correlation of 3-dimensionally quantified intraretinal and subret-
                      inal fluid with visual acuity in neovascular age-related macular degeneration, JAMA
                      Ophthalmol. 134 (2) (2016) 182–190.
                    [8]  G. Querques, F. Coscas, R. Forte, N. Massamba, M. Sterkers, E.H. Souied, Cystoid mac-
                      ular degeneration in exudative age-related macular degeneration, Am. J. Ophthalmol.
                      152 (1) (2011), https://doi.org/10.1016/j.ajo.2011.01.027. 100–107.e2.
                    [9]  S.A.  Zweifel, M.  Engelbert, K.  Laud, R.  Margolis, R.F.  Spaide, K.B.  Freund, Outer
                      retinal tubulation, Arch. Ophthalmol. 127 (12) (2009) 1596,  https://doi.org/10.1001/
                      archophthalmol.2009.326.
                   [10]  S. Klimscha, S.M. Waldstein, T. Schlegl, H. Bogunović, A. Sadeghipour, A.M. Philip,
                      D.  Podkowinski, E.  Pablik, L.  Zhang, M.D.  Abramoff, M.  Sonka, B.S.  Gerendas,
                      U.  Schmidt-Erfurth, Spatial correspondence between intraretinal fluid, subretinal
                      fluid, and pigment epithelial detachment in neovascular age-related macular degenera-
                      tion. Invest. Ophthalmol. Vis. Sci. 58 (10) (2017) 4039–4048, https://doi.org/10.1167/
                      iovs.16-20201.
                   [11]  S.M.  Waldstein, C.  Simader, G.  Staurenghi, N.V.  Chong, P.  Mitchell, G.J.  Jaffe,
                      C.  Lu,  T.A.  Katz, U.  Schmidt-Erfurth, Morphology and visual acuity in Aflibercept
                      and Ranibizumab therapy for neovascular age-related macular degeneration in the
                      VIEW trials, Ophthalmology 123 (7) (2016) 1521–1529,  https://doi.org/10.1016/j.
                      ophtha.2016.03.037.
                    [12] J.J. Arnold, C.M. Markey, N.P. Kurstjens, R.H. Guymer, The role of sub-retinal
                      fluid in determining treatment outcomes in patients with neovascular age-related
                      macular  degeneration—a  phase  IV  randomised clinical  trial  with  ranibizumab:
                      the  FLUID  study, BMC Ophthalmol.  16  (1)  (2016) 31,  https://doi.org/10.1186/
                      s12886-016-0207-3.
                   [13]  M.D. Abramoff, M.K. Garvin, M. Sonka, Retinal imaging and image analysis, IEEE
                      Rev. Biomed. Eng. 3 (2010) 169–208.
                   [14]  A.  Krizhevsky, I.  Sutskever, G.E.  Hinton, ImageNet classification with deep convo-
                      lutional neural networks, Proc. Adv. Neural Inform. Process. Syst. (NIPS), 2012, pp.
                      1097–1105.
                   [15]  T. Schlegl, S.M. Waldstein, W.-D. Vogl, U. Schmidt-Erfurth, G. Langs, Predicting se-
                      mantic descriptions from medical images with convolutional neural networks, in: Lect.
                      Notes Comput. Sci., Proc. Int. Conf. Inform. Process. Med. Imaging (IPMI), vol. 9123,
                      2015, pp. 437–448.
                   [16]  J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmenta-
                      tion, Proc. IEEE Int. Conf. Comput. Vis. Pattern Recogn. (CVPR), 2015, pp. 3431–3440,
                      https://doi.org/10.1109/CVPR.2015.7298965.
                   [17]  H. Noh, S. Hong, B. Han, Learning deconvolution network for semantic segmentation,
                      in: Proc. IEEE Int. Conf. Comput. Vis. (ICCV), 2015, pp. 1520–1528.
                   [18]  V.  Badrinarayanan,  A.  Kendall, R.  Cipolla, SegNet: a deep  convolutional encoder-
                      decoder architecture for image segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 39
                      (12) (2017) 2481–2495, https://doi.org/10.1109/TPAMI.2016.2644615.
   290   291   292   293   294   295   296   297   298   299   300