Page 299 - Computational Retinal Image Analysis
P. 299

References  297




                      endothelial growth factor medications, Graefe’s Arch. Clin. Exp. Ophthalmol. 256 (1)
                      (2018) 91–98, https://doi.org/10.1007/s00417-017-3839-y.
                   [59]  C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
                      A. Rabinovich, Going deeper with convolutions, Proc. IEEE Int. Conf. Comput. Vis. Pattern
                      Recogn. (CVPR), IEEE, 2015, pp. 1–9, https://doi.org/10.1109/CVPR.2015.7298594.
                   [60]  M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, Proc.
                      Eur. Conf. Comput. Vis. (ECCV), 2014, pp. 818–833.
                   [61]  Y.-Y. Liu, M. Chen, H. Ishikawa, G. Wollstein, J.S. Schuman, J.M. Rehg, Automated
                      macular pathology diagnosis in retinal OCT images using multi-scale spatial pyramid
                      and local binary patterns in texture and shape encoding, Med. Image Anal. 15 (5) (2011)
                      748–759, https://doi.org/10.1016/j.media.2011.06.005.
                   [62]  P.P. Srinivasan, L.A. Kim, P.S. Mettu, S.W. Cousins, G.M. Comer, J.A. Izatt, S. Farsiu,
                      Fully automated detection of diabetic macular edema and dry age-related macular degen-
                      eration from optical coherence tomography images, Biomed. Opt. Express 5 (10) (2014)
                      3568, https://doi.org/10.1364/BOE.5.003568.
                   [63]  F.G.  Venhuizen, B.  van Ginneken, F.  van  Asten, M.J.J.P.  van Grinsven, S.  Fauser,
                      C.B. Hoyng, T. Theelen, C.I. Sánchez, Automated staging of age-related macular degen-
                      eration using optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 58 (4) (2017)
                      2318–2328, https://doi.org/10.1167/iovs.16-20541.
                    [64]  S. Farsiu, Dataset for classification of ophthalmic SD-OCT images of normal, diabetic
                      macular edema, and dry age-related macular degeneration subjects, 2014. http://peo-
                      ple.duke.edu/ sf59/Srinivasan_BOE_2014_dataset.htm. Accessed 10 November 2018.
                   [65]  D. Kermany, K. Zhang, M. Goldbaum, Large dataset of labeled optical coherence tomogra-
                      phy (OCT) and chest X-ray images. 2018. https://doi.org/10.17632/rscbjbr9sj.3. Available
                      from: https://data.mendeley.com/datasets/rscbjbr9sj/3, (Accessed November 10, 2018).
                   [66]  U. Schmidt-Erfurth, H. Bogunovic, A. Sadeghipour, T. Schlegl, G. Langs, B.S. Gerendas,
                      A. Osborne, S.M. Waldstein, Machine learning to analyze the prognostic value of cur-
                      rent imaging biomarkers in neovascular age-related macular degeneration, Ophthalmol.
                      Retina 2 (1) (2018) 24–30, https://doi.org/10.1016/j.oret.2017.03.015.
                   [67]  B.S. Gerendas, H. Bogunovic, A. Sadeghipour, T. Schlegl, G. Langs, S.M. Waldstein,
                      U. Schmidt-Erfurth, Computational image analysis for prognosis determination in DME,
                      Vis. Res. 139 (2017) 204–210, https://doi.org/10.1016/j.visres.2017.03.008.
                   [68]  W.-D. Vogl, S.M. Waldstein, B.S. Gerendas, T. Schlegl, G. Langs, U. Schmidt-Erfurth,
                      Analyzing and predicting visual acuity outcomes of anti-VEGF therapy by a longitudinal
                      mixed effects model of imaging and clinical data, Invest. Ophthalmol. Vis. Sci. 58 (10)
                      (2017) 4173, https://doi.org/10.1167/iovs.17-21878.
                   [69]  H.  Bogunovic, S.M.  Waldstein,  T.  Schlegl, G.  Langs,  A.  Sadeghipour, X.  Liu,
                      B.S. Gerendas, A. Osborne, U. Schmidt-Erfurth, Prediction of anti-VEGF treatment re-
                      quirements in neovascular AMD using a machine learning approach. Invest. Ophthalmol.
                      Vis. Sci. 58 (7) (2017) 3240–3248, https://doi.org/10.1167/iovs.16-21053.
                   [70]  F.L. Ferris, A. Kassoff, G.H. Bresnick, I. Bailey, New visual acuity charts for clinical
                      research, Am. J. Ophthalmol. 94 (1) (1982) 91–96.
                   [71]  U. Schmidt-Erfurth, S.M. Waldstein, G.G. Deak, M. Kundi, C. Simader, Pigment epi-
                      thelial detachment followed by retinal cystoid degeneration leads to vision loss in treat-
                      ment of neovascular age-related macular degeneration, Ophthalmology 122 (4) (2015)
                      822–832, https://doi.org/10.1016/j.ophtha.2014.11.017.
                   [72]  N.M.  Laird, J.H.  Ware, Random-effects models for longitudinal data, Biometrics 38
                      (1982) 963–974.
   294   295   296   297   298   299   300   301   302   303   304