Page 299 - Computational Retinal Image Analysis
P. 299
References 297
endothelial growth factor medications, Graefe’s Arch. Clin. Exp. Ophthalmol. 256 (1)
(2018) 91–98, https://doi.org/10.1007/s00417-017-3839-y.
[59] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
A. Rabinovich, Going deeper with convolutions, Proc. IEEE Int. Conf. Comput. Vis. Pattern
Recogn. (CVPR), IEEE, 2015, pp. 1–9, https://doi.org/10.1109/CVPR.2015.7298594.
[60] M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, Proc.
Eur. Conf. Comput. Vis. (ECCV), 2014, pp. 818–833.
[61] Y.-Y. Liu, M. Chen, H. Ishikawa, G. Wollstein, J.S. Schuman, J.M. Rehg, Automated
macular pathology diagnosis in retinal OCT images using multi-scale spatial pyramid
and local binary patterns in texture and shape encoding, Med. Image Anal. 15 (5) (2011)
748–759, https://doi.org/10.1016/j.media.2011.06.005.
[62] P.P. Srinivasan, L.A. Kim, P.S. Mettu, S.W. Cousins, G.M. Comer, J.A. Izatt, S. Farsiu,
Fully automated detection of diabetic macular edema and dry age-related macular degen-
eration from optical coherence tomography images, Biomed. Opt. Express 5 (10) (2014)
3568, https://doi.org/10.1364/BOE.5.003568.
[63] F.G. Venhuizen, B. van Ginneken, F. van Asten, M.J.J.P. van Grinsven, S. Fauser,
C.B. Hoyng, T. Theelen, C.I. Sánchez, Automated staging of age-related macular degen-
eration using optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 58 (4) (2017)
2318–2328, https://doi.org/10.1167/iovs.16-20541.
[64] S. Farsiu, Dataset for classification of ophthalmic SD-OCT images of normal, diabetic
macular edema, and dry age-related macular degeneration subjects, 2014. http://peo-
ple.duke.edu/ sf59/Srinivasan_BOE_2014_dataset.htm. Accessed 10 November 2018.
[65] D. Kermany, K. Zhang, M. Goldbaum, Large dataset of labeled optical coherence tomogra-
phy (OCT) and chest X-ray images. 2018. https://doi.org/10.17632/rscbjbr9sj.3. Available
from: https://data.mendeley.com/datasets/rscbjbr9sj/3, (Accessed November 10, 2018).
[66] U. Schmidt-Erfurth, H. Bogunovic, A. Sadeghipour, T. Schlegl, G. Langs, B.S. Gerendas,
A. Osborne, S.M. Waldstein, Machine learning to analyze the prognostic value of cur-
rent imaging biomarkers in neovascular age-related macular degeneration, Ophthalmol.
Retina 2 (1) (2018) 24–30, https://doi.org/10.1016/j.oret.2017.03.015.
[67] B.S. Gerendas, H. Bogunovic, A. Sadeghipour, T. Schlegl, G. Langs, S.M. Waldstein,
U. Schmidt-Erfurth, Computational image analysis for prognosis determination in DME,
Vis. Res. 139 (2017) 204–210, https://doi.org/10.1016/j.visres.2017.03.008.
[68] W.-D. Vogl, S.M. Waldstein, B.S. Gerendas, T. Schlegl, G. Langs, U. Schmidt-Erfurth,
Analyzing and predicting visual acuity outcomes of anti-VEGF therapy by a longitudinal
mixed effects model of imaging and clinical data, Invest. Ophthalmol. Vis. Sci. 58 (10)
(2017) 4173, https://doi.org/10.1167/iovs.17-21878.
[69] H. Bogunovic, S.M. Waldstein, T. Schlegl, G. Langs, A. Sadeghipour, X. Liu,
B.S. Gerendas, A. Osborne, U. Schmidt-Erfurth, Prediction of anti-VEGF treatment re-
quirements in neovascular AMD using a machine learning approach. Invest. Ophthalmol.
Vis. Sci. 58 (7) (2017) 3240–3248, https://doi.org/10.1167/iovs.16-21053.
[70] F.L. Ferris, A. Kassoff, G.H. Bresnick, I. Bailey, New visual acuity charts for clinical
research, Am. J. Ophthalmol. 94 (1) (1982) 91–96.
[71] U. Schmidt-Erfurth, S.M. Waldstein, G.G. Deak, M. Kundi, C. Simader, Pigment epi-
thelial detachment followed by retinal cystoid degeneration leads to vision loss in treat-
ment of neovascular age-related macular degeneration, Ophthalmology 122 (4) (2015)
822–832, https://doi.org/10.1016/j.ophtha.2014.11.017.
[72] N.M. Laird, J.H. Ware, Random-effects models for longitudinal data, Biometrics 38
(1982) 963–974.