Page 127 - Control Theory in Biomedical Engineering
P. 127

Genetic fuzzy logic based system for arrhythmia classification  113



                        200                                   ECG signal
                                                              R wave
                                                              S wave
                        150

                      Voltage(mV)  100


                         50


                          0


                        –50
                            1.36   1.38  1.4   1.42  1.44  1.46  1.48
                                              Time(s)               10 4
              Fig. 8 Detection of R and S waves for recording 100 from MIT-BIH arrhythmia database.



                        150                                   ECG signal
                                                              P wave
                                                              T wave

                        100
                       Voltage (mV)  50





                         0


                        –50

                            0.5   1    1.5  2    2.5   3    3.5   4
                                              Time(s)
              Fig. 9 Detection of P and T waves for recording 100 from MIT-BIH arrhythmia database.


                                  Intervalle_TT ¼ T on  T off               (5)
                              Intervalle_QRS ¼ QRS    QRS                   (6)
                                                   off      on
                 As a result, the obtained morphological features of wave duration and
              amplitude are used to obtain the corresponding input feature vector for each
              ECG recording. Then, the input feature vectors are concatenated with the
   122   123   124   125   126   127   128   129   130   131   132