Page 286 - Control Theory in Biomedical Engineering
P. 286
258 Control theory in biomedical engineering
functional for rehabilitation. In addition, recommendations were given as
appropriate to improve the functionality of exoskeletons.
References
Accogli, A., Grazi, L., Crea, S., Panarese, A., Carpaneto, J., Vitiello, N., Micera, S., 2017.
EMG-based detection of user’s intentions for human-machine shared control of an assis-
tive upper-limb exoskeleton. In: Gonza ´lez-Vargas, J., Iba ´n ˜ez, J., Contreras-Vidal, J.L.,
van der Kooij, H., Pons, J. (Eds.), Wearable Robotics: Challenges and Trends. Springer
International Publishing, Cham, pp. 181–185.
American Stroke Association, 2019. https://www.stroke.org/we-can-help/survivors/
stroke-recovery/first-steps-to-recovery/rehabilitation-therapy-after-a-stroke/.
Amirabdollahian, F., Loureiro, R., Gradwell, E., Collin, C., Harwin, W., Johnson, G., 2007.
Multivariate analysis of the Fugl-Meyer outcome measures assessing the effectiveness of
GENTLE/S robot-mediated stroke therapy. J. Neuroeng. Rehabil. 4 (1), 4. https://doi.
org/10.1186/1743-0003-4-4.
Arimoto, S., 1999. Robotics research toward explication of everyday physics. Int. J. Robot.
Res. 18 (11), 1056–1063.
Aviles, L.A.Z., Ortega, J.C.P., Hurtado, E.G., 2012. Experimental study of the methodology
for the modelling and simulation of mobile manipulators. Int. J. Adv. Robot. Syst. 9 (5),
192.
Balasubramanian, S., Wei, R., Perez, M., Shepard, B., Koeneman, E., Koeneman, J., He, J.,
2008. Rupert: an exoskeleton robot for assisting rehabilitation of arm functions.
In: Virtual Rehabilitation, 2008, IEEE, pp. 163–167.
Benjamin, E.J., Blaha, M.J., Chiuve, S.E., Cushman, M., Das, S.R., Deo, R., de Ferranti, S.D.,
Floyd, J., Fornage, M., Gillespie, C., Isasi, C.R., Jimenez, M.C., Jordan, L.C., Judd, S.E.,
Lackland, D., Lichtman, J.H., Lisabeth, L., Liu, S., Longenecker, C.T., Mackey, R.H.,
Matsushita, K., Mozaffarian, D., Mussolino, M.E., Nasir, K., Neumar, R.W.,
Palaniappan, L., Pandey, D.K., Thiagarajan, R.R., Reeves, M.J., Ritchey, M.,
Rodriguez, C.J., Roth, G.A., Rosamond, W.D., Sasson, C., Towfighi, A.,
Tsao, C.W., Turner, M.B., Virani, S.S., Voeks, J.H., Willey, J.Z., Wilkins, J.T.,
Wu, J.H., Alger, H.M., Wong, S.S., Muntner, P., American Heart Association Council
on Epidemiology and Prevention Statistics Committee, Stroke Statistics Subcommittee,
2017. Heart disease and stroke statistics-2017 update: a report from the American Heart
Association. Circulation 135 (10), e146–e603. https://doi.org/10.1161/CIR.
0000000000000485.
Bhagat, N.A., Venkatakrishnan, A., Abibullaev, B., Artz, E.J., Yozbatiran, N., Blank, A.A.,
French, J., Karmonik, C., Grossman, R.G., O’Malley, M.K., Francisco, G.E.,
Contreras-Vidal, J.L., 2016. Design and optimization of an EEG-Based brain machine
interface (BMI) to an upper-limb exoskeleton for stroke survivors. Front. Neurosci.
10, 122. https://doi.org/10.3389/fnins.2016.00122.
Brahim, B., Maarouf, S., Luna, C.O., Abdelkrim, B., Rahman, M.H., 2016a. Adaptive iter-
ative observer based on integral backstepping control for upper extremity exoskeleton
robot. In: 2016 8th International Conference on Modelling, Identification and Control
(ICMIC), IEEE, pp. 886–891.
Brahim, B., Rahman, M.H., Saad, M., Luna, C.O., 2016b. Iterative estimator-based non-
linear backstepping control of a robotic exoskeleton. Int. J. Mech. Aerosp. Ind. Mecha-
tron. Manuf. Eng. 10 (8), 1313–1319.
Brahmi, A., Saad, M., Gauthier, G., Brahmi, B., Zhu, W.H., Ghommam, J., 2016. Adaptive
backstepping control of mobile manipulator robot based on virtual decomposition