Page 291 - Control Theory in Biomedical Engineering
P. 291
Exoskeletons in upper limb rehabilitation 263
Rahman, M.H., Kittel-Ouimet, T., Saad, M., Kenn e, J.-P., Archambault, P.S., 2012. Devel-
opment and control of a robotic exoskeleton for shoulder, elbow and forearm movement
assistance. Appl. Bionics Biomech. 9(3), https://doi.org/10.3233/ABB-2012-0061.
Rahman, M.H., Saad, M., Kenn e, J.-P., Archambault, P.S., 2013a. Control of an exoskel-
eton robot arm with sliding mode exponential reaching law. Int. J. Control Autom. Syst.
11 (1), 92–104. https://doi.org/10.1007/s12555-011-0135-1.
e
Rahman, M.H., Saad, M., Kenn , J.-P., Archambault, P.S., 2013b. Control of an exoskel-
eton robot arm with sliding mode exponential reaching law. Int. J. Control Autom. Syst.
11 (1), 92–104.
Rahman, M.H., Rahman, M.J., Cristobal, O.L., Saad, M., Kenn e, J.P., Archambault, P.S.,
2014. Development of a whole arm wearable robotic exoskeleton for rehabilitation and
to assist upper limb movements. Robotica 33 (1), 19–39. https://doi.org/10.1017/
S0263574714000034.
Reinkensmeyer, D.J., Kahn, L.E., Averbuch, M., McKenna-Cole, A.N., Schmit, B.,
Rymer, W., 2000. Understanding and treating arm movement impairment after chronic
brain injury: progress with the ARM guide. J. Rehabil. Res. Dev. 37 (6), 653–662.
Rocon, E., Ruiz, A.F., Raya, R., Schiele, A., Pons, J.L., Belda-Lois, J.M., Poveda, R.,
Vivas, M.J., Moreno, J.C., 2008. Human-robot physical interaction. In: Wearable
Robots, John Wiley & Sons, Ltd, pp. 127–163. https://doi.org/
10.1002/9780470987667.ch5.
Sale, P., Franceschini, M., Mazzoleni, S., Palma, E., Agosti, M., Posteraro, F., 2014. Effects
of upper limb robot-assisted therapy on motor recovery in subacute stroke patients.
J. Neuroeng. Rehabil. 11 (1), 104. https://doi.org/10.1186/1743-0003-11-104.
Sanjuan, J.D., Castillo, A.D., Padilla, M.A., Quintero, M.C., Gutierrez, E.E., Sampayo, I.P.,
Hernandez, J.R., Rahman, M.H., 2020. Cable driven exoskeleton for upper-limb reha-
bilitation: a design review. Robot. Auton. Syst. 103445. https://doi.org/10.1016/j.
robot.2020.103445.
Schenkman, M., de Cartaya, V.R., 1987. Kinesiology of the shoulder complex. J. Orthop.
Sports Phys. Ther. 8 (9), 438–450. https://doi.org/10.2519/jospt.1987.8.9.438.
Schiele, A., van der Helm, F.C.T., 2006. Kinematic design to improve ergonomics in human
machine interaction. IEEE Trans. Neural Syst. Rehabil. Eng. 14 (4), 456–469. https://
doi.org/10.1109/TNSRE.2006.881565.
Sidney, S., Rosamond, W.D., Howard, V.J., Luepker, R.V., 2013. The “Heart Disease and
Stroke Statistics2013 Update” and the Need for a National Cardiovascular Surveillance
System. American Heart Association, Dallas, TX, pp. 21–23.
Slotine, J.-J.E., Li, W., et al., 1991. Applied Nonlinear Control, vol. 199. Prentice Hall,
Englewood Cliffs, NJ.
Song, R., Tong, K.Y., Hu, X.L., Zheng, X.J., 2007. Myoelectrically controlled robotic sys-
tem that provide voluntary mechanical help for persons after stroke. In: 2007 IEEE 10th
International Conference on Rehabilitation Robotics, pp. 246–249. https://doi.org/
10.1109/ICORR.2007.4428434.
Stienen, A.H.A., Hekman, E.E.G., van der Helm, F.C.T., van der Kooij, H., 2009. Self-
aligning exoskeleton axes through decoupling of joint rotations and translations. IEEE
Trans. Robot. 25 (3), 628–633. https://doi.org/10.1109/TRO.2009.2019147.
Statistics, Stroke, 2019. Upperlimb. http://www.strokecenter.org/patients/about-stroke/
stroke-statistics/.
Stroppa, F., Loconsole, C., Marcheschi, S., Frisoli, A., 2017. A robot-assisted neuro-
rehabilitation system for post-stroke patients’ motor skill evaluation with Alex exoskel-
eton. In: Iba ´n ˜ez, J., Gonza ´lez-Vargas, J., Azorı ´n, J.M., Akay, M., Pons, J.L. (Eds.), Con-
verging Clinical and Engineering Research on Neurorehabilitation II. Springer
International Publishing, Cham, pp. 501–505.