Page 288 - Control Theory in Biomedical Engineering
P. 288
260 Control theory in biomedical engineering
Garrec, P., Friconneau, J.P., Measson, Y., Perrot, Y., 2008. ABLE, an innovative transparent
exoskeleton for the upper-limb. In: 2008 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pp. 1483–1488.
Gopura, R.A.R.C., Kiguchi, K., Li, Y., 2009. SUEFUL-7: a 7DOF upper-limb exoskeleton
robot with muscle-model-oriented EMG-based control. In: 2009 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 1126–1131.
Guidali, M., Duschau-Wicke, A., Broggi, S., Klamroth-Marganska, V., Nef, T., Riener, R.,
2011. A robotic system to train activities of daily living in a virtual environment. Med.
Biol. Eng. Comput. 49 (10), 1213. https://doi.org/10.1007/s11517-011-0809-0.
Gunasekara, M., Gopura, R., Jayawardena, S., 2015. 6-REXOS: upper limb exoskeleton
robot with improved pHRI. Int. J. Adv. Robot. Syst. 12 (4), 47. https://doi.org/
10.5772/60440.
Halder, A.M., Itoi, E., An, K.-N., 2000. Anatomy and biomechanics of the shoulder.
Orthop. Clin. 31 (2), 159–176. https://doi.org/10.1016/S0030-5898(05)70138-3.
Hogan, N., Krebs, H.I., Charnnarong, J., Srikrishna, P., Sharon, A., 1992. MIT-MANUS: a
workstation for manual therapy and training. I. In: Proceedings IEEE International
Workshop on Robot and Human Communication, pp. 161–165.
Huang, A.-C., Chien, M.-C., 2010. Adaptive Control of Robot Manipulators: A Unified
Regressor-Free Approach. World Scientific, Singapore.
Hutchinson, S., Hager, G.D., Corke, P.I., 1996. A tutorial on visual servo control. IEEE
Trans. Robot. Autom. 12 (5), 651–670.
Irshaidat, M., Soufian, M., Al-Ibadi, A., Nefti-Meziani, S., 2019. A novel elbow pneumatic
muscle actuator for exoskeleton arm in post-stroke rehabilitation. In: 2019 2nd IEEE
International Conference on Soft Robotics (RoboSoft), pp. 630–635.
Islam, M.R., Assad-Uz-Zaman, M., Rahman, M.H., 2019. Design and control of an ergo-
nomic robotic shoulder for wearable exoskeleton robot for rehabilitation. Int. J. Dyn.
Control. https://doi.org/10.1007/s40435-019-00548-3.
Islam, M.R., Rahmani, M., Rahman, M.H., 2020. A novel exoskeleton with fractional slid-
ing mode control for upper limb rehabilitation. Robotica, 1–22. https://doi.org/
10.1017/S0263574719001851.
Kazerooni, H., 2005. Exoskeletons for human power augmentation. In: 2005 IEEE/RSJ
International Conference on Intelligent Robots and Systems, August, pp. 3459–3464.
https://doi.org/10.1109/IROS.2005.1545451.
Khalil, H.K., Grizzle, J., 1996. Nonlinear Systems, vol. 3. Prentice Hall, Englewood Cliffs,
NJ.
Khan, A.M., Usman, M., Ali, A., Khan, F., Yaqub, S., Han, C., 2016a. Muscle circumfer-
ence sensor and model reference-based adaptive impedance control for upper limb assist
exoskeleton robot. Adv. Robot. 30 (24), 1515–1529.
Khan, A.M., Yun, D.-W., Ali, M.A., Zuhaib, K.M., Yuan, C., Iqbal, J., Han, J., Shin, K.,
Han, C., 2016b. Passivity based adaptive control for upper extremity assist exoskeleton.
Int. J. Control Autom. Syst. 14 (1), 291–300.
Khan, A.M., Yun, D.-W., Zuhaib, K.M., Iqbal, J., Yan, R.-J., Khan, F., Han, C., 2017.
Estimation of desired motion intention and compliance control for upper limb assist exo-
skeleton. Int. J. Control Autom. Syst. 15 (2), 802–814.
Kiguchi, K., Esaki, R., Tsuruta, T., Watanabe, K., Fukuda, T., 2003. An exoskeleton system
for elbow joint motion rehabilitation. In: Proceedings 2003 IEEE/ASME International
Conference on Advanced Intelligent Mechatronics (AIM 2003), vol. 2, pp. 1228–1233.
Kiguchi, K., Rahman, M.H., Sasaki, M., Teramoto, K., 2008. Development of a 3DOF
mobile exoskeleton robot for human upper-limb motion assist. Robot. Auton. Syst.
56 (8), 678–691. https://doi.org/10.1016/j.robot.2007.11.007.
Kim, B., Deshpande, A.D., 2015. Controls for the shoulder mechanism of an upper-body
exoskeleton for promoting scapulohumeral rhythm. In: 2015 IEEE International Con-
ference on Rehabilitation Robotics (ICORR), pp. 538–542.