Page 289 - Control Theory in Biomedical Engineering
P. 289
Exoskeletons in upper limb rehabilitation 261
Kim, B., Deshpande, A.D., 2017. An upper-body rehabilitation exoskeleton harmony with
an anatomical shoulder mechanism: design, modeling, control, and performance evalu-
ation. Int. J. Robot. Res. 36 (4), 414–435. https://doi.org/10.1177/
0278364917706743.
Kim, G., Lim, S., Kim, H., Lee, B., Seo, S., Cho, K., Lee, W., 2017. Is robot-assisted therapy
effective in upper extremity recovery in early stage stroke?—A systematic literature
review. J. Phys. Ther. Sci. 29 (6), 1108–1112. https://doi.org/10.1589/jpts.29.1108.
Krebs, H.I., Volpe, B.T., Williams, D., Celestino, J., Charles, S.K., Lynch, D., Hogan, N.,
2007. Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Trans.
Neural Syst. Rehabil. Eng. 15 (3), 327–335. https://doi.org/10.1109/TNSRE.
2007.903899.
Krebs, H.I., Edwards, D., Hogan, N., 2016. Forging mens et manus: the MIT experience in
upper extremity robotic therapy. In: Reinkensmeyer, D.J., Dietz, V. (Eds.), Neuroreh-
abilitation Technology. Springer International Publishing, Cham, pp. 333–350. https://
doi.org/10.1007/978-3-319-28603-7_16.
Krstic, M., Kanellakopoulos, I., Kokotovic, P.V., et al., 1995. Nonlinear and Adaptive Con-
trol Design, vol. 222. Wiley, New York, NY.
Laschi, C., Cianchetti, M., 2014. Soft robotics: new perspectives for robot bodyware
and control. Front. Bioeng. Biotechnol. 2, 3. https://doi.org/10.3389/fbioe.
2014.00003.
Lee, B.-K., Lee, H.-D., Lee, J.-Y., Shin, K., Han, J.-S., Han, C.-S., 2012. Development of
dynamic model-based controller for upper limb exoskeleton robot. In: 2012 IEEE Inter-
national Conference on Robotics and Automation (ICRA), IEEE, pp. 3173–3178.
Lee, K.W., Kim, S.B., Lee, J.H., Lee, S.J., Kim, J.W., 2017. Effect of robot-assisted game
training on upper extremity function in stroke patients. Ann. Rehabil. Med. 41 (4),
539–546. https://doi.org/10.5535/arm.2017.41.4.539.
Li, Z., Su, C.-Y., Li, G., Su, H., 2015. Fuzzy approximation-based adaptive backstepping
control of an exoskeleton for human upper limbs. IEEE Trans. Fuzzy Syst. 23 (3),
555–566.
Li, Z., Huang, Z., He, W., Su, C.Y., 2017. Adaptive impedance control for an upper limb
robotic exoskeleton using biological signals. IEEE Trans. Ind. Electron. 64 (2),
1664–1674. https://doi.org/10.1109/TIE.2016.2538741.
Li, J., Cao, Q., Zhang, C., Tao, C., Ji, R., 2019. Position solution of a novel four-DOFs self-
aligning exoskeleton mechanism for upper limb rehabilitation. Mech. Mach. Theory
141, 14–39. https://doi.org/10.1016/j.mechmachtheory.2019.06.020.
Liu, C., Cheah, C.C., Slotine, J.-J.E., 2006. Adaptive Jacobian tracking control of rigid-link
electrically driven robots based on visual task-space information. Automatica 42 (9),
1491–1501.
Liu, L., Shi, Y.-Y., Xie, L., 2016. A novel multi-DOF exoskeleton robot for upper limb
rehabilitation. J. Mech. Med. Biol. 16 (8), 1640023. https://doi.org/10.1142/
s0219519416400236.
Liu, H., Tao, J., Lyu, P., Tian, F., 2020. Human-robot cooperative control based on SEMG
for the upper limb exoskeleton robot. Robot. Auton. Syst. 125, 103350. https://doi.
org/10.1016/j.robot.2019.103350.
Lo, H.S., Xie, S.Q., 2012. Exoskeleton robots for upper-limb rehabilitation: state of the art
and future prospects. Med. Eng. Phys. 34 (3), 261–268. https://doi.org/10.1016/j.
medengphy.2011.10.004.
Luna, C.O., Rahman, M.H., Saad, M., Archambault, P., Zhu, W.-H., 2016. Virtual decom-
position control of an exoskeleton robot arm. Robotica 34 (7), 1587–1609.
Madani, T., Daachi, B., Djouani, K., 2017. Modular-controller-design-based fast terminal
sliding mode for articulated exoskeleton systems. IEEE Trans. Control Syst. Technol.
25 (3), 1133–1140. https://doi.org/10.1109/TCST.2016.2579603.