Page 289 - Control Theory in Biomedical Engineering
P. 289

Exoskeletons in upper limb rehabilitation  261


              Kim, B., Deshpande, A.D., 2017. An upper-body rehabilitation exoskeleton harmony with
                 an anatomical shoulder mechanism: design, modeling, control, and performance evalu-
                 ation.  Int.  J.  Robot.  Res.  36  (4),  414–435.  https://doi.org/10.1177/
                 0278364917706743.
              Kim, G., Lim, S., Kim, H., Lee, B., Seo, S., Cho, K., Lee, W., 2017. Is robot-assisted therapy
                 effective in upper extremity recovery in early stage stroke?—A systematic literature
                 review. J. Phys. Ther. Sci. 29 (6), 1108–1112. https://doi.org/10.1589/jpts.29.1108.
              Krebs, H.I., Volpe, B.T., Williams, D., Celestino, J., Charles, S.K., Lynch, D., Hogan, N.,
                 2007. Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Trans.
                 Neural Syst. Rehabil. Eng. 15 (3), 327–335. https://doi.org/10.1109/TNSRE.
                 2007.903899.
              Krebs, H.I., Edwards, D., Hogan, N., 2016. Forging mens et manus: the MIT experience in
                 upper extremity robotic therapy. In: Reinkensmeyer, D.J., Dietz, V. (Eds.), Neuroreh-
                 abilitation Technology. Springer International Publishing, Cham, pp. 333–350. https://
                 doi.org/10.1007/978-3-319-28603-7_16.
              Krstic, M., Kanellakopoulos, I., Kokotovic, P.V., et al., 1995. Nonlinear and Adaptive Con-
                 trol Design, vol. 222. Wiley, New York, NY.
              Laschi, C., Cianchetti, M., 2014. Soft robotics: new perspectives for robot bodyware
                 and control. Front. Bioeng. Biotechnol. 2, 3. https://doi.org/10.3389/fbioe.
                 2014.00003.
              Lee, B.-K., Lee, H.-D., Lee, J.-Y., Shin, K., Han, J.-S., Han, C.-S., 2012. Development of
                 dynamic model-based controller for upper limb exoskeleton robot. In: 2012 IEEE Inter-
                 national Conference on Robotics and Automation (ICRA), IEEE, pp. 3173–3178.
              Lee, K.W., Kim, S.B., Lee, J.H., Lee, S.J., Kim, J.W., 2017. Effect of robot-assisted game
                 training on upper extremity function in stroke patients. Ann. Rehabil. Med. 41 (4),
                 539–546. https://doi.org/10.5535/arm.2017.41.4.539.
              Li, Z., Su, C.-Y., Li, G., Su, H., 2015. Fuzzy approximation-based adaptive backstepping
                 control of an exoskeleton for human upper limbs. IEEE Trans. Fuzzy Syst. 23 (3),
                 555–566.
              Li, Z., Huang, Z., He, W., Su, C.Y., 2017. Adaptive impedance control for an upper limb
                 robotic exoskeleton using biological signals. IEEE Trans. Ind. Electron. 64 (2),
                 1664–1674. https://doi.org/10.1109/TIE.2016.2538741.
              Li, J., Cao, Q., Zhang, C., Tao, C., Ji, R., 2019. Position solution of a novel four-DOFs self-
                 aligning exoskeleton mechanism for upper limb rehabilitation. Mech. Mach. Theory
                 141, 14–39. https://doi.org/10.1016/j.mechmachtheory.2019.06.020.
              Liu, C., Cheah, C.C., Slotine, J.-J.E., 2006. Adaptive Jacobian tracking control of rigid-link
                 electrically driven robots based on visual task-space information. Automatica 42 (9),
                 1491–1501.
              Liu, L., Shi, Y.-Y., Xie, L., 2016. A novel multi-DOF exoskeleton robot for upper limb
                 rehabilitation. J. Mech. Med. Biol. 16 (8), 1640023. https://doi.org/10.1142/
                 s0219519416400236.
              Liu, H., Tao, J., Lyu, P., Tian, F., 2020. Human-robot cooperative control based on SEMG
                 for the upper limb exoskeleton robot. Robot. Auton. Syst. 125, 103350. https://doi.
                 org/10.1016/j.robot.2019.103350.
              Lo, H.S., Xie, S.Q., 2012. Exoskeleton robots for upper-limb rehabilitation: state of the art
                 and future prospects. Med. Eng. Phys. 34 (3), 261–268. https://doi.org/10.1016/j.
                 medengphy.2011.10.004.
              Luna, C.O., Rahman, M.H., Saad, M., Archambault, P., Zhu, W.-H., 2016. Virtual decom-
                 position control of an exoskeleton robot arm. Robotica 34 (7), 1587–1609.
              Madani, T., Daachi, B., Djouani, K., 2017. Modular-controller-design-based fast terminal
                 sliding mode for articulated exoskeleton systems. IEEE Trans. Control Syst. Technol.
                 25 (3), 1133–1140. https://doi.org/10.1109/TCST.2016.2579603.
   284   285   286   287   288   289   290   291   292   293   294