Page 287 - Control Theory in Biomedical Engineering
P. 287
Exoskeletons in upper limb rehabilitation 259
approach. In: 2016 8th International Conference on Modelling, Identification and Con-
trol (ICMIC), IEEE, pp. 707–712.
Brahmi, B., Saad, M., Luna, C.O., Archambault, P.S., Rahman, M.H., 2017. Sliding mode
control of an exoskeleton robot based on time delay estimation. In: 2017 International
Conference on Virtual Rehabilitation (ICVR), IEEE, pp. 1–2.
Brahmi, B., Saad, M., Luna, C.O., Archambault, P.S., Rahman, M.H., 2018a. Passive and
active rehabilitation control of human upper-limb exoskeleton robot with dynamic
uncertainties. Robotica 36 (11), 1757–1779.
Brahmi, B., Saad, M., Ochoa-Luna, C., Rahman, M.H., Brahmi, A., 2018b. Adaptive track-
ing control of an exoskeleton robot with uncertain dynamics based on estimated time-
delay control. IEEE/ASME Trans. Mechatron. 23 (2), 575–585.
Carignan, C., Tang, J., Roderick, S., Naylor, M., 2007. A configuration-space approach to
controlling a rehabilitation arm exoskeleton. In: 2007 IEEE 10th International Confer-
ence on Rehabilitation Robotics, pp. 179–187.
Cheah, C.C., 2006. Approximate Jacobian control for robot manipulators. In: Advances in
Robot Control, Springer, pp. 35–53.
Cheah, C.-C., Liu, C., Slotine, J.-J.E., 2005. Adaptive Jacobian tracking control of robots
based on visual task-space information. In: Proceedings of the 2005 IEEE International
Conference on Robotics and Automation, 2005. ICRA 2005, IEEE, pp. 3498–3503.
Cheah, C.-C., Liu, C., Slotine, J.-J.E., 2006. Adaptive tracking control for robots with
unknown kinematic and dynamic properties. Int. J. Robot. Res. 25 (3), 283–296.
Chen, W., Ge, S.S., Wu, J., Gong, M., 2015. Globally stable adaptive backstepping neural
network control for uncertain strict-feedback systems with tracking accuracy known a
priori. IEEE Trans. Neural Netw. Learn. Syst. 26 (9), 1842–1854.
Cheng, H.-S., Ju, M.-S., Lin, C.-C.K., 2004. Improving elbow torque output of stroke
patients with assistive torque controlled by EMG signals. J. Biomech. Eng. 125 (6),
881–886. https://doi.org/10.1115/1.1634284.
Chou, C.-P., Hannaford, B., 1996. Measurement and modeling of McKibben pneumatic
artificial muscles. IEEE Trans. Robot. Autom. 12 (1), 90–102. https://doi.org/
10.1109/70.481753.
Coote, S., Murphy, B., Harwin, W., Stokes, E., 2008. The effect of the GENTLE/s robot-
mediated therapy system on arm function after stroke. Clin. Rehabil. 22 (5), 395–405.
https://doi.org/10.1177/0269215507085060.
Cui, X., Chen, W., Jin, X., Agrawal, S.K., 2017. Design of a 7-DOF cable-driven arm exo-
skeleton (CAREX-7) and a controller for dexterous motion training or assistance. IEEE/
ASME Trans. Mechatron. 22 (1), 161–172. https://doi.org/10.1109/
TMECH.2016.2618888.
Demircan, E., Yung, S., Choi, M., Baschshi, J., Nguyen, B., Rodriguez, J., 2020. Opera-
tional space analysis of human muscular effort in robot assisted reaching tasks. Robot.
Auton. Syst. 125, 103429. https://doi.org/10.1016/j.robot.2020.103429.
Deng, L., Janabi-Sharifi, F., Wilson, W.J., 2002. Stability and robustness of visual servoing
methods. In: IEEE International Conference on Robotics and Automation, 2002. Pro-
ceedings. ICRA’02, vol. 2. IEEE, pp. 1604–1609.
Espiau, B., Chaumette, F., Rives, P., 1992. A new approach to visual servoing in robotics.
IEEE Trans. Robot. Autom. 8 (3), 313–326.
Gandolfi, M., Formaggio, E., Geroin, C., Storti, S.F., Boscolo Galazzo, I., Bortolami, M.,
Saltuari, L., Picelli, A., Waldner, A., Manganotti, P., Smania, N., 2018. Quantification of
upper limb motor recovery and EEG power changes after robot-assisted bilateral arm
training in chronic stroke patients: a prospective pilot study. Neural Plast. 2018, 15.
https://doi.org/10.1155/2018/8105480.
Gans, N.R., Hutchinson, S.A., Corke, P.I., 2003. Performance tests for visual servo control
systems, with application to partitioned approaches to visual servo control. Int. J. Robot.
Res. 22 (10–11), 955–981.