Page 290 - Control Theory in Biomedical Engineering
P. 290

262   Control theory in biomedical engineering


          Mahdavian, M., Toudeshki, A.G., Yousefi-Koma, A., 2015. Design and fabrication of a
             3DoF upper limb exoskeleton. In: 2015 3rd RSI International Conference on Robotics
             and Mechatronics (ICROM), pp. 342–346. https://doi.org/10.1109/ICRoM.
             2015.7367808.
          Malis,E.,Chaumette,F.,2002.Theoreticalimprovementsinthestabilityanalysisofanewclass
             of model-free visual servoing methods. IEEE Trans. Robot. Autom. 18 (2), 176–186.
          Manna, S.K., Dubey, V.N., 2018. Comparative study of actuation systems for portable upper
             limb exoskeletons. Med. Eng. Phys. 60, 1–13. https://doi.org/10.1016/j.medengphy.
             2018.07.017.
          Marcheschi, S., Salsedo, F., Fontana, M., Bergamasco, M., 2011. Body extender: whole body
             exoskeleton for human power augmentation. In: 2011 IEEE International Conference
             on Robotics and Automation, May, pp. 611–616. https://doi.org/10.1109/
             ICRA.2011.5980132.
          Nef, T., Mihelj, M., Kiefer, G., Perndl, C., Muller, R., Riener, R., 2007. Armin-
             exoskeleton for arm therapy in stroke patients. In: IEEE 10th International Conference
             on Rehabilitation Robotics, 2007. ICORR 2007, IEEE, pp. 68–74.
          Nef, T., Guidali, M., Klamroth-Marganska, V., Riener, R., 2009a. Armin—exoskeleton
             robot for stroke rehabilitation. In: D€ossel, O., Schlegel, W.C. (Eds.), In: World Congress
             on Medical Physics and Biomedical Engineering, September 7–12, 2009, Munich, Ger-
             many, Springer, Berlin, Heidelberg, pp. 127–130.
          Nef, T., Guidali, M., Riener, R., 2009b. ARMin III—arm therapy exoskeleton with an
             ergonomic shoulder actuation. Appl. Bionics Biomech. 6(2), https://doi.org/
             10.1080/11762320902840179.
          Ochoa Luna, C., Habibur Rahman, M., Saad, M., Archambault, P.S., Bruce Ferrer, S., 2015.
             Admittance-based upper limb robotic active and active-assistive movements. Int. J. Adv.
             Robot. Syst. 12 (9), 117.
          Otten, A., Voort, C., Stienen, A., Aarts, R., van Asseldonk, E., van der Kooij, H., 2015.
             LIMPACT: a hydraulically powered self-aligning upper limb exoskeleton. IEEE/ASME
             Trans. Mechatron. 20 (5), 2285–2298. https://doi.org/10.1109/TMECH. 2014.
             2375272.
          Perry, J.C., Rosen, J., Burns, S., 2007. Upper-limb powered exoskeleton design. IEEE/
             ASME Trans. Mechatron. 12 (4), 408–417. https://doi.org/10.1109/TMECH.
             2007.901934.
          Perry, J.C., Maura, R., Bitikofer, C.K., Wolbrecht, E.T., 2019. BLUE SABINO: develop-
             ment of a bilateral exoskeleton instrument for comprehensive upper-extremity neuro-
             muscular assessment. In: Masia, L., Micera, S., Akay, M., Pons Jos e, L. (Eds.),
             Converging Clinical and Engineering Research on Neurorehabilitation III. Springer
             International Publishing, Cham, pp. 493–497.
          Peternel, L., Noda, T., Petri c, T., Ude, A., Morimoto, J., Babi c, J., 2016. Adaptive control of
             exoskeleton robots for periodic assistive behaviours based on EMG feedback minimisa-
             tion. PLoS ONE 11 (2), 1–26. https://doi.org/10.1371/journal.pone.0148942.
          Poli, P., Morone, G., Rosati, G., Masiero, S., 2013. Robotic technologies and rehabilitation:
             new tools for stroke patients’ therapy. BioMed. Res. Int. 2013, 8. https://doi.org/
             10.1155/2013/153872.
          Pratt, G.A., Williamson, M.M., 1995. Series elastic actuators. In: Proceedings 1995 IEEE/
             RSJ International Conference on Intelligent Robots and Systems. Human Robot Inter-
             action and Cooperative Robots, August, vol. 1, pp. 399–406.
          Priyadarshini, R.G., Suryarajan, R., Prasad, J., 2018. Development of electromyogram based
             rehabilitation device for upper limb amputation using neural network. In: 2018 3rd
             International Conference on Communication and Electronics Systems (ICCES),
             pp. 826–830. https://doi.org/10.1109/CESYS.2018.8723958.
   285   286   287   288   289   290   291   292   293   294   295