Page 290 - Control Theory in Biomedical Engineering
P. 290
262 Control theory in biomedical engineering
Mahdavian, M., Toudeshki, A.G., Yousefi-Koma, A., 2015. Design and fabrication of a
3DoF upper limb exoskeleton. In: 2015 3rd RSI International Conference on Robotics
and Mechatronics (ICROM), pp. 342–346. https://doi.org/10.1109/ICRoM.
2015.7367808.
Malis,E.,Chaumette,F.,2002.Theoreticalimprovementsinthestabilityanalysisofanewclass
of model-free visual servoing methods. IEEE Trans. Robot. Autom. 18 (2), 176–186.
Manna, S.K., Dubey, V.N., 2018. Comparative study of actuation systems for portable upper
limb exoskeletons. Med. Eng. Phys. 60, 1–13. https://doi.org/10.1016/j.medengphy.
2018.07.017.
Marcheschi, S., Salsedo, F., Fontana, M., Bergamasco, M., 2011. Body extender: whole body
exoskeleton for human power augmentation. In: 2011 IEEE International Conference
on Robotics and Automation, May, pp. 611–616. https://doi.org/10.1109/
ICRA.2011.5980132.
Nef, T., Mihelj, M., Kiefer, G., Perndl, C., Muller, R., Riener, R., 2007. Armin-
exoskeleton for arm therapy in stroke patients. In: IEEE 10th International Conference
on Rehabilitation Robotics, 2007. ICORR 2007, IEEE, pp. 68–74.
Nef, T., Guidali, M., Klamroth-Marganska, V., Riener, R., 2009a. Armin—exoskeleton
robot for stroke rehabilitation. In: D€ossel, O., Schlegel, W.C. (Eds.), In: World Congress
on Medical Physics and Biomedical Engineering, September 7–12, 2009, Munich, Ger-
many, Springer, Berlin, Heidelberg, pp. 127–130.
Nef, T., Guidali, M., Riener, R., 2009b. ARMin III—arm therapy exoskeleton with an
ergonomic shoulder actuation. Appl. Bionics Biomech. 6(2), https://doi.org/
10.1080/11762320902840179.
Ochoa Luna, C., Habibur Rahman, M., Saad, M., Archambault, P.S., Bruce Ferrer, S., 2015.
Admittance-based upper limb robotic active and active-assistive movements. Int. J. Adv.
Robot. Syst. 12 (9), 117.
Otten, A., Voort, C., Stienen, A., Aarts, R., van Asseldonk, E., van der Kooij, H., 2015.
LIMPACT: a hydraulically powered self-aligning upper limb exoskeleton. IEEE/ASME
Trans. Mechatron. 20 (5), 2285–2298. https://doi.org/10.1109/TMECH. 2014.
2375272.
Perry, J.C., Rosen, J., Burns, S., 2007. Upper-limb powered exoskeleton design. IEEE/
ASME Trans. Mechatron. 12 (4), 408–417. https://doi.org/10.1109/TMECH.
2007.901934.
Perry, J.C., Maura, R., Bitikofer, C.K., Wolbrecht, E.T., 2019. BLUE SABINO: develop-
ment of a bilateral exoskeleton instrument for comprehensive upper-extremity neuro-
muscular assessment. In: Masia, L., Micera, S., Akay, M., Pons Jos e, L. (Eds.),
Converging Clinical and Engineering Research on Neurorehabilitation III. Springer
International Publishing, Cham, pp. 493–497.
Peternel, L., Noda, T., Petri c, T., Ude, A., Morimoto, J., Babi c, J., 2016. Adaptive control of
exoskeleton robots for periodic assistive behaviours based on EMG feedback minimisa-
tion. PLoS ONE 11 (2), 1–26. https://doi.org/10.1371/journal.pone.0148942.
Poli, P., Morone, G., Rosati, G., Masiero, S., 2013. Robotic technologies and rehabilitation:
new tools for stroke patients’ therapy. BioMed. Res. Int. 2013, 8. https://doi.org/
10.1155/2013/153872.
Pratt, G.A., Williamson, M.M., 1995. Series elastic actuators. In: Proceedings 1995 IEEE/
RSJ International Conference on Intelligent Robots and Systems. Human Robot Inter-
action and Cooperative Robots, August, vol. 1, pp. 399–406.
Priyadarshini, R.G., Suryarajan, R., Prasad, J., 2018. Development of electromyogram based
rehabilitation device for upper limb amputation using neural network. In: 2018 3rd
International Conference on Communication and Electronics Systems (ICCES),
pp. 826–830. https://doi.org/10.1109/CESYS.2018.8723958.