Page 292 - Control Theory in Biomedical Engineering
P. 292
264 Control theory in biomedical engineering
Sutapun, A., Sangveraphunsiri, V., 2015. A 4-DOF upper limb exoskeleton for stroke reha-
bilitation: kinematics mechanics and control. Int. J. Mech. Eng. Robot. Res. 4 (3),
269–272. https://doi.org/10.18178/ijmerr.4.3.269-272.
Tang, Z., Zhang, K., Sun, S., Gao, Z., Zhang, L., Yang, Z., 2014. An upper-limb power-
assist exoskeleton using proportional myoelectric control. Sensors (Basel, Switzerland)
14 (4), 6677–6694. https://doi.org/10.3390/s140406677.
Teasell, R.W., Kalra, L., 2004. What’s new in stroke rehabilitation. Stroke 35 (2), 383–385.
https://doi.org/10.1161/01.str.0000115937.94104.76.
Triwiyanto, Wahyunggoro, O., Nugroho, H.A., Herianto, 2016. String actuated upper limb
exoskeleton based on surface electromyography control. In: 2016 6th International
Annual Engineering Seminar (InAES), pp. 176–181. https://doi.org/10.1109/
INAES.2016.7821929.
Tsagarakis, N.G., Caldwell, D.G., 2003. Development and control of a “soft-actuated” exo-
skeleton for use in physiotherapy and training. Auton. Robot. 15 (1), 21–33. https://doi.
org/10.1023/A:1024484615192.
Tu, X., Zhou, X., Li, J., Su, C., Sun, X., Han, H., Jiang, X., He, J., 2017. Iterative learning
control applied to a hybrid rehabilitation exoskeleton system powered by PAM and FES.
Clust. Comput. 20 (4), 2855–2868. https://doi.org/10.1007/s10586-017-0880-x.
Ueda, J., Ming, D., Krishnamoorthy, V., Shinohara, M., Ogasawara, T., 2010. Individual
muscle control using an exoskeleton robot for muscle function testing. IEEE Trans.
Neural Syst. Rehabil. Eng. 18 (4), 339–350.
Veerbeek, J.M., Langbroek-Amersfoort, A.C., van Wegen, E.E.H., Meskers, C.G.M.,
Gert, K., 2016. Effects of robot-assisted therapy for the upper limb after stroke: a system-
atic review and meta-analysis. Neurorehabil. Neural Repair 31 (2), 107–121. https://
doi.org/10.1177/1545968316666957.
Walha, L., Fakhfakh, T., Haddar, M., 2006. Backlash effect on dynamic analysis of a two-
stage spur gear system. J. Fail. Anal. Prev. 6 (3), 60–68. https://doi.org/10.1007/
BF02692330.
Walsh,C.J.,Paluska,D.,Pasch,K.,Grand,W.,Valiente,A.,Herr,H.,2006.Developmentofa
lightweight, underactuated exoskeleton for load-carrying augmentation. In: Proceedings
2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006,
May, pp. 3485–3491. https://doi.org/10.1109/ROBOT. 2006.1642234.
Xiao, F., 2019. Proportional myoelectric and compensating control of a cable-conduit
mechanism-driven upper limb exoskeleton. ISA Trans. 89, 245–255. https://doi.org/
10.1016/j.isatra.2018.12.028.
Xiao, F., Gao, Y., Wang, Y., Zhu, Y., Zhao, J., 2017. Design of a wearable cable-driven
upper limb exoskeleton based on epicyclic gear trains structure. Technol. Health Care
25 (S1), 3–11. https://doi.org/10.3233/THC-171300.
Xiao, F., Gao, Y., Wang, Y., Zhu, Y., Zhao, J., 2018. Design and evaluation of a 7-DOF
cable-driven upper limb exoskeleton. J. Mech. Sci. Technol. 32 (2), 855–864. https://
doi.org/10.1007/s12206-018-0136-y.
Xie, S., et al., 2016. Advanced robotics for medical rehabilitation. Springer Tracts Adv.
Robot. 108, 1–41.
Yao, B., 1996. Adaptive Robust Control of Nonlinear Systems With Application to Control
of Mechanical Systems (Ph.D. thesis). University of California, Berkeley.
Yazarel, H., Cheah, C.-C., 2002. Task-space adaptive control of robotic manipulators with
uncertainties in gravity regressor matrix and kinematics. IEEE Trans. Autom. Control
47 (9), 1580–1585.
Yoo, D.H., Kim, S.Y., 2015. Effects of upper limb robot-assisted therapy in the rehabilitation
of stroke patients. J. Phys. Ther. Sci. 27 (3), 677–679. https://doi.org/10.1589/
jpts.27.677.