Page 318 - Design and Operation of Heat Exchangers and their Networks
P. 318
304 Design and operation of heat exchangers and their networks
Example H6C10—cont’d
Table 6.32 Problem data for H6C10 (Huo et al., 2013).
2
_
Stream T in (°C) T out (°C) C (kW/K) α (kW/m K) Cost ($/kWyr)
H1 385 159 131.51 1.238
H2 516 43 1198.96 0.546
H3 132 82 378.52 0.771
H4 91 60 589.545 0.859
H5 217 43 186.216 1
H6 649 43 116 1
C1 30 385 119.1 1.85
C2 99 471 191.05 1.129
C3 437 521 377.91 0.815
C4 78 418.6 160.43 1
C5 217 234 1297.7 0.443
C6 256 266 2753 2.085
C7 49 149 197.39 1
C8 59 163.4 123.156 1.063
C9 163 649 95.98 1.81
C10 219 221.3 1997.5 1.377
HU1 1800 800 1.2 35
HU2 509 509 1 27
CU 38 82 1 2.1
0.6
2
Heat exchanger cost¼26,600+4147.5A $/yr (A in m )
Total annual cost ($/yr)
Solutions in the literature Reported Revised
Own work – 6,673,406
Brandt et al. (2011) 6,110,902 a 6,790,990
Zhang et al. (2017) b 6,511,584 7,094,611
Pava ˜o et al. (2017c) b 7,301,437 7,128,572
Huo et al. (2013, Fig. 8) b 7,385,856 7,218,412
Khorasany and Fesanghary (2009) 7,435,740 7,982,270
Gorji-Bandpy et al. (2011) b 8,220,154 9,048,250
a
Inlet/outlet temperatures of cold utility: 31.1°C/35.5°C.
b
No stream split.