Page 408 - Design of Reinforced Masonry Structures
P. 408

WALLS UNDER GRAVITY AND TRANSVERSE LOADS      6.59

             Hence, the neutral axis lies in the shell, and the section can be treated as a rectangular
           section.
                                      −
                        I =  bc  3  + nA ( d c)  2
                         cr        se
                             3
                            12 1 24)
                          =  ()( .  3  + 16 11 0.2222 3 81 1 24)−  .  2
                                               )( .
                                      (.)(
                               3
                          =  31 25 in 4
                              .
           First iteration:
                                          )
                      δ =  5 Mh  2  +  5( M ser  −  M h  2
                            cr
                                         cr
                       u
                          48 EI     48 EI
                             mg        m cr
                                              −
                                                       ×
                                                    (
                          (.
                                                    )
                                         (
                                            .
                                                 .
                        =  518 96620 12)(  ×  ) 2  +  5 2584 1896 20012)  2
                          48 1800 443 3)    48 1800 31 25)
                            (
                                    .
                                 (
                                              (
                                                  )( .
                                )
                         0 143 0 734
                        = .   + .
                                        .
                        = .     <    h  = 168 in.  OK
                         0 877 in. < 000.
           Calculate moment due to new d .
                                  u
                           M  = 25.84 + 1.328(0.877) = 27.0 k-in.
                            u2
           The new value of moment, 27.0 k-in., is very close to the first value of 25.84 k-in.;
           therefore, further iteration is not necessary. Calculate the nominal moment, M .
                                                                   n
                                                a ⎞
                                M = ( A f +  P ⎜ ) ⎛ ⎝ d − ⎟ ⎠ 2  (6.18, MSJC-08/3-28)
                                      s y
                                 n
                                          u
           where
                  P +  A f  1 328  + 0 20 60)
                                   (
                           .
                                 .
               a =  u  s y  =          =  0 694 in. < 1.25 in. (shell thickness)
                                         .
                   .
                  008  fb ′ m  080 20 12)
                                    2
                                 .
                               (
                             .
                                  )
                                  (
             Hence, the compression block lies in the shell, and the section can be treated as a
           rectangular section.
                                ⎛   a ⎞
                    M = ( A f +  P ⎜ ) ⎝ d − ⎟ ⎠ 2
                      n
                               u
                          s y
                                      ⎛     0 694 ⎞
                                             .
                                      ] ⎜
                       = [( .20 )(60 )  + .328 3 .881−  ⎟
                                 1
                         0
                                      ⎝       2 ⎠
                       =  46 15 k-in.
                          .
                   fM  = (0.9)(46.15) = 41.54 k-in. > M  = 27.0 k-in.    OK
                                              u2
                      n
           Therefore, the wall is adequately reinforced.
   403   404   405   406   407   408   409   410   411   412   413