Page 407 - Design of Reinforced Masonry Structures
P. 407

6.58                       CHAPTER SIX

             Because M  < M , the wall is not cracked at the service load condition. Therefore,
                     ser
                          cr
           use Eq. (6.22) to calculate deflection.
                                     (. )(
                               ser
                        δ  =  5Mh  2  =  515 18 20  ×12)  2  =  . 0 114 in.
                         ser
                                           (
                                       (
                             48EI    48 1800)(443 . )
                                               3
                                mg
             Maximum allowable d  = 0.007h = 0.007(20 × 12) = 1.68 in. > 0.114 in.
                              s
             The service load deflection (0.136 in.) is much smaller than the permissible deflec-
           tion (1.68 in.). Hence, the service load deflection is OK without P-∆ effects. Calculate
           P-∆ effects.
             Additional M  caused by d  = P d  = 1.328(0.114) = 0.15 k-in.
                                 ser
                       ser
                                        ser
                                      u
             Calculate moments due to factored loads.
                                   ⎛
                                              2
                                    e ⎞
                                            (
                                               (
                                        .
                       M =  wL 2  +  P ⎜ ⎟ =  0 042 20 12)  + 032.  ⎛ 4 ⎞
                                                       ⎜ ⎜ ⎟
                             u
                         u        u                    ⎝ 2 ⎠
                             8     ⎝ ⎠ 2    8

                               +
                             .
                          = 25 2 0 64  = 25 84 k-in.  > M cr  = 18 96 k-in.
                                 .
                                                     .
                                       .
             Because M  > M , the wall is cracked; therefore, use Eq. (6.23) to calculate d .
                     u
                                                                        u
                          cr
           Calculate the moment of inertia of the cracked section, I , given by Eq. (6.24):
                                                   cr
                                              −
                                                2
                                            (
                                 I =  bc 3  + nA d c)
                                 cr
                                           se
                                     3
             For No. 6 bar @ 24 in. on center, the reinforcement per unit width of wall,
                                2
                        A  = 0.20 in.  (Table A.23)
                         s
                           P +  A f  1 328  + 0 20 60)
                                     .
                                             (
                                          .
                       A =  u   s y  =          = 0 222.  in. 2
                        se
                              f y        60
                           E   29 000
                                 ,
                        n =  s  =    = 16 11.   (or from Table A.14)
                           E    1800
                            m
                                  .
                                         .
                        ρ =  A se  =  0 222  = 0 0048
                           bd  ()( .
                                12 3 81)

                       rn = (0.0048)(16.11) = 0.078
                        k = (ρ n + ρ n − ρ n
                               2
                               )
                                  2
                                  2
                          = ( . 0 078 ) + ( . 0 078 ) − . 0 078
                                    2
                          = . 0 3255
             (Alternatively, from Table A.15, nr = 0.078 and k = 0.3246 ≈ 0.325 in.)
                    c = kd = (0.325)(3.81) = 1.24 in. < 1.25 in. (shell thickness)
   402   403   404   405   406   407   408   409   410   411   412