Page 470 - Design of Reinforced Masonry Structures
P. 470

7.32                      CHAPTER SEVEN

           ∆  = ∆ gross  − ∆ solid  + ∆ 2 + 3 + 4 + 5  = (1.2271 − 0.6288 + 1.2387)(10 ) = 1.837(10 ) in.
                                                                   −4
                                                        −4
            net
             R =  1  =   1    = 5444kips/in.
                ∆   (.   )(  −4
                     1 837 10 )
                 net
                Method C: In Fig. E7.6, all piers except Pier 1 can be considered as fixed against
                rotation at top and bottom. Pier 1 would be considered as a cantilever, fixed at
                the base and free to rotate at the top. With these assumptions, rigidities of various
                piers can be calculated as follows:
                Pier 1:
                           h  6
                             =  = 0 167
                                   .
                           d  36
                          ∆  =       1
                           1     ⎡  ⎛  h ⎞  3  ⎛ h ⎞ ⎤
                              Et 4  ⎝  + 3 ⎝  ⎥
                               m ⎢
                                 ⎣  d ⎠    d ⎠  ⎦
                             =    1     [( .167 +  3 ( .167 )]
                                               3
                                                   0
                                          0
                                              )
                                         4
                              ( (1800 )( .625 )
                                   7
                             =  . 3 786 (10 )in.
                                    − −5

                                               ,
                          R  =  1  =  1     = 26 413kips/in .
                              ∆ 1  (.  )(  −5
                           1
                                   3 786 10 )
                Pier 2:
                           h  10
                             =   = 125
                                   .
                           d   8
                                    ⎛ ⎡
                                       3
                                           h ⎞
                                          ⎛
                                     h ⎞
                          ∆  =  1  = ⎜ ⎟ + ⎜ ⎟ ⎥ ⎤ ⎥
                                   ⎢
                                         3
                            2       ⎝ d ⎠  ⎝ d ⎠
                              Et   ⎣          ⎦
                               m
                             =     1    [( .  3  +3 125)]
                                                ( .
                                         125)
                              ( 1800 7 625)
                                  )( .
                                      4 −
                                     0
                               .
                             = 4 1553 1 ( 0 )in.

                               1       1
                           R 2  =  ∆  =    4 −  =  2407kips/in.
                                   4 1553 10 )
                                2  (.   )(
                Pier 3:
                            h  =  6  = 09 .
                            d  667
                                .
                                      3
                                         ⎛
                                    h ⎞
                                          h ⎞
                           ∆  =  1  ⎢ ⎛ ⎡ ⎜ ⎟ + ⎜ ⎟ ⎥ ⎤ ⎥
                                        3
                            3  Et ⎝ ⎠    ⎝ d ⎠ ⎦
                                m ⎣
                                    d
                                   1
                             =           [( 09 . ) 3  + 3 09 . )]
                                                (
                               ( 1800 7 625)
                                   )( .
                                     −4
                               .
                                      )
                             = 2 498 10 )in.
                                   (

                           R =  1  =   1     =  4003 kips/in .
                            3  ∆   (.498 )(10  4 −  )
                                   2
                                3
   465   466   467   468   469   470   471   472   473   474   475