Page 187 - Dynamics of Mechanical Systems
P. 187

0593_C06_fm  Page 168  Monday, May 6, 2002  2:28 PM





                       168                                                 Dynamics of Mechanical Systems


                       The forces F  and F  may be expressed in terms of n , n , and n  by first expressing them
                                 6
                                                                               3
                                        7
                                                                     1
                                                                        2
                       in terms of unit vectors µµ µµ and νν νν along the box diagonals as:
                                                    F =  26µµ   and    F = 20νν                 (6.3.9)
                                                     6            7
                       where µµ µµ and νν νν are directed along OQ and GQ, respectively. Then, µµ µµ and νν νν are:

                                               µµ= OQ OQ  = (3n  + 12n  + 4n  ) 13             (6.3.10)
                                                              1     2    3

                       and


                                                   νν= GQ GQ  = (3n  + 4n  ) 5                  (6.3.11)
                                                                  1    3
                       Hence, F  and F  are:
                              6
                                     7
                                                    F =  6 n +  24 n +  8 n lb                 (6.3.12)
                                                     6    1     2    3

                       and

                                                      F =  12 n +  16 n lb                     (6.3.13)
                                                       7     1     3

                       These results may be tabulated as in Table 6.3.1.
                        The components of the resultant R are then obtained by adding the columns in Table
                       6.3.1. That is,

                                                    R = 3 n + 24 n + 24 n lb                   (6.3.14)
                                                          1     2     3

                        The moment of the system about O may be calculated using Eq. (6.3.2): using convenient
                       position vectors M  becomes:
                                       O
                                        M =  OO × F + OC × F + OB × F + F + OC ×  F
                                          O        1       2       3   3       4
                                             + OB × F + OO × F + OG ×  F
                                                    5       6        7
                                             0
                                           =+ 3  n × − ( 10 n ) + 4 n × − ( 15 n ) + 3 n × − ( 8 n )
                                                  1       3    3       1     1     2
                                                          0
                                             + 4 n ×(8 n ) ++ 12 n ×(12 n + 16 n )
                                                 3    2         2     1     3
                                           = 30 n = 60 n − 24 n − 32 n −  144n  + 192n
                                                2      2     3    1 1    3      1
                       or:


                                                 M = 160 n − 30 n − 168 n ftlb                 (6.3.15)
                                                   O      1     2      3
   182   183   184   185   186   187   188   189   190   191   192