Page 188 - Dynamics of Mechanical Systems
P. 188

0593_C06_fm  Page 169  Monday, May 6, 2002  2:28 PM





                       Forces and Force Systems                                                    169


                                     TABLE 6.3.1
                                     A Component Listing of the Forces of Figure 6.3.6
                                                F   (lb)
                                     F i                     n 1        n 2         n 3
                                                 i
                                                  10          0          0          10
                                     F 1
                                                  10          0          0         –10
                                     F 2
                                                  15        –15          0           0
                                     F 3
                                                  8           0          –8          0
                                     F 4
                                                  8           0          8           0
                                     F 5
                                                  26          6          24          8
                                     F 6
                                                  20         12          0          16
                                     F 7
                       Similarly, this moment about Q is:
                                      M =  QO × F + QA × F + QB × F + QH ×  F
                                        Q        1       2        3       4
                                           + QQ × F + QD × F + QD ×  F
                                                   5       6        7
                                                                                 n )
                                          =− ( 4 n − 12 n ) ×(10 n ) +− ( 12 n + 3 n ) ×− ( 10
                                                3    2       3       2    1       3
                                           +− ( 12 n ) ×− ( 15 n ) +(3 n − 4 n ) ×− ( 8 n )
                                                  2        1     1    3      2
                                                                          ×
                                           + O + 3 n × 6 (  n + 24 n +  8n 3) +  3n 1 ( 12n  + 16n 3)
                                                   1    1     2 2              3
                                          =− 120n  +  120n  +  30n  − 180n  −  24n  −  32n
                                                 1      1    2      3     3     1
                                           +  72n  −  24n  −  48n
                                                3     2     2

                       or

                                                 M =−32  n − 42 n − 132 n ftlb                 (6.3.16)
                                                   Q       1    2      3

                       According to Eq. (6.3.6), M  and M  are related by the expression:
                                               O
                                                      Q
                                                                    ×
                                                      M =  M +  OQ R                           (6.3.17)
                                                        O    Q
                       By substituting from Eqs. (6.3.14), (6.3.15), and (6.3.16), we can check the validity of
                       Eq. (6.3.17):


                               160n − 30n − 168n = − 32n − 42n − 132n
                                                  ?
                                   1     2      3       1     2      3
                                                   +( 12n + 4n ) ×( 3n + 24n + 24n )
                                                         2    3     1     2     3
                                                 =− 32n − 42n − 132n − 36n + 288n + 12n −  96n
                                                       1     2      3     3      1     2     1
                                                 = 160n − 30n −  168n
                                                       1     2      3
                       Equation (6.3.17) is thus verified.
   183   184   185   186   187   188   189   190   191   192   193