Page 282 - Dynamics of Mechanical Systems
P. 282

0593_C08_fm  Page 263  Monday, May 6, 2002  2:45 PM





                       Principles of Dynamics: Newton’s Laws and d’Alembert’s Principle            263


                       and

                                                β =  θ ,   β = θ − θ ,   β = θ − θ             (8.11.11)
                                                 1   1   2   2  1   3   3   2

                       The governing equations are then:
                          + [
                                                     1 (
                                                    ˙˙
                                                      +
                        43cosβ   2  + cosβ 3  + cos  2 (β  + β 3)] [  5 3) +( 3 2)cosβ 2  + cosβ 3
                                                    β
                         +( 12)cos  2 (β  + β 3)] β 2 ( [  13) +( 12)cosβ 3 ( 1 2)cos  2 (β  + β 3)] β 3
                                           +
                                                                             ˙˙
                                                                +
                                         ˙˙
                                                            +
                         −( 32)( β ˙  1 + β ˙ 2) 2 sinβ 2 ( 32)β ˙ 2 sinβ 2  +( )β ˙ 2 1  sin (β  2 + )  (8.11.12)
                                            +
                                                                       β
                                                          12
                                                                        3
                                                ) 1
                                                                                         β
                           12  β ˙  + β ˙  ) 2 sinβ  12  β ˙  + β ˙  + β ˙  ) 2 sinβ  12  β ˙  + β ˙  + β ˙  ) 2  sin (β  + )
                                    2     3           2   3     3           2   3      2  3
                         +( )( 1           −( )( 1               −( )( 1
                                                      1 1 (
                         +( )( )sinβ   1 +( )( )sin β + ) +(  12)( ) l sin  1 (β  + β 2  + β 3) =  0
                                                         β
                           52 g l
                                          32 g l
                                                                  g
                                                          2
                               ( [  53) +( 32)cosβ 2  + cosβ 3  +( 1 2) (β 2  + β 3)] [  53) + cosβ β 2
                                                                                   3]
                                                                       + (
                                                                     ˙˙
                                                                                     ˙˙
                                                                     β
                                                           cos
                                                                      1
                                + ( [  13) +( 12)cosββ ˙˙ 3  +( 3 2)β 1 2 ˙  sinβ 2 +( 12)β 2 ˙ 1 (β 2  + β 3)
                                               3]
                                                                       sin
                                                                                               (8.11.13)
                                +( 12)( β ˙  + β ˙ 2) 2  − 12 β ˙  + β ˙  + β ˙  ) 2 sinβ  3 2 g l  sin β  + )
                                                                                         β
                                                 3
                                       1     sinβ −( )( 1   2   3      3  +( )( ) ( 1     2
                                                    β
                                  12 g l  sin β  + β  + ) = 0
                                +( )( ) ( 1
                                                 2   3
                       and
                                     ( [  13) +( 12)cosβ 3  +( 12) (β 2  + β 3)] [  13) +( 12)cosβ β 2
                                                                                     3]
                                                                      + (
                                                                                       ˙˙
                                                                   ˙˙
                                                                   β
                                                         cos
                                                                    1
                                     +( 13)β  +( 12)β 2 ˙ 1 (β  + β 3) +( 12)( β ˙  + β ˙ 2) 2 sinβ
                                          ˙˙
                                           3        sin  2           1         3               (8.11.14)
                                     +( 12)( ) (βg l  sin  + β  + β 3) =  0
                                                   1   2
                       Although these equations (developed using Kane’s equations; see Chapter 11), are not
                       necessarily in their simplest form, they are nevertheless far more detailed than Eqs. (8.11.1),
                       (8.11.2), and (8.11.3).
                       8.12 A Rotating Pinned Rod
                       For an example illustrating nonplanar motion, consider the rotating pinned rod B depicted
                       in Figure 8.12.1, where S is a shaft rotating with an angular speed Ω about a vertical axis.
                       Let k be a unit vector parallel to the axis of S as shown. Let the radius of S be small. Let
                       B be attached to S at one of its ends O by a frictionless pin whose axis is fixed on a radial
   277   278   279   280   281   282   283   284   285   286   287