Page 278 - Dynamics of Mechanical Systems
P. 278

0593_C08_fm  Page 259  Monday, May 6, 2002  2:45 PM





                       Principles of Dynamics: Newton’s Laws and d’Alembert’s Principle            259


                        Observe that the unit vectors of the rods may be expressed in terms of the horizontal
                       and vertical unit vectors and in terms of each other as:


                                               n = c  n + s  n ,  n = c  n + s  n
                                                11  1 1  1  2  21  2  1  2  2
                                                                                               (8.10.4)
                                               n =−s  n + c  n ,   n = −s  n + c  n
                                                12   1 1   1  2  22   2  1  2  2
                       and

                                                   c
                                                                  c
                                               n = n   −  s n ,   n = n  −  s n
                                                1   1 11  1 12  1  2  21  2  22
                                                                                               (8.10.5)
                                                    s
                                               n =− n   +  c n ,   n = n  +  c n
                                                                   s
                                                2    1 11  1 12  2  2  21  2  22
                       and
                                            n = c  n − s  n ,  n = c  n + s  n
                                                                            −
                                                         −
                                                                     −
                                                  −
                                             11  2 1  21  2 1  22  21  2 1 11  2 1 12
                                                                                               (8.10.6)
                                            n = s  n + c  n ,   n = −s  n + c  n
                                                         −
                                                                             −
                                                                      −
                                                  −
                                             12  2 1  21  2 1  22  22  2 1 11  2 1  22
                       where s  and c are abbreviations for sinθ  and cosθ  (i = 1, 2), respectively, and s  and c i–j
                                                                                              i–j
                                                           i
                              i
                                                                    i
                                   i
                       are abbreviations for sin(θ  – θ ) and cos(θ  – θ ), respectively.
                                                            i
                                                  j
                                                               j
                                              i
                        To examine the forces on the rods and to invoke d’Alembert’s principle it is helpful to
                       consider a free-body diagram of the system of both rods and a free-body diagram of the
                       second rod (B ). These diagrams are shown in Figures 8.10.3 and 8.10.4 where O , O  and
                                                                                              1
                                                                                                 2
                                   2
                       Q , Q  are horizontal and vertical components of the pin reaction forces. From Eqs. (8.6.5)
                        1
                           2
                       and (8.6.6), the inertia forces and torques are:
                                                     *
                                                                *
                                                            G
                                                    F =−m  a ,   F =−m a G 2                   (8.10.7)
                                                             1
                                                     1          2
                       and
                                                          ˙˙
                                                                            ˙˙
                                                                *
                                               *
                                             T =−(ml  2  12)θ  n ,  T =−(ml  2  12)θ  n        (8.10.8)
                                              1            1  3  2           2  3
                           O  2
                                  O
                       O           1
                                  F *
                                             T
                                   1
                                              1
                          G  1                                              Q  2
                                                                                  Q
                                           F *     T  *                  Q         1
                                            2
                            mg                       2                            F  *
                                                                                   2
                                                                           G
                                  G                                          2            T  2
                                    2
                                   mg                                        mg
                       FIGURE 8.10.3                              FIGURE 8.10.4
                       Free-body diagram of both rods.            Free-body diagram of rod B 2 .
   273   274   275   276   277   278   279   280   281   282   283