Page 389 - Dynamics of Mechanical Systems
P. 389

0593_C11_fm  Page 370  Monday, May 6, 2002  2:59 PM





                       370                                                 Dynamics of Mechanical Systems



                                                                                                n
                                                  j                                              2
                                            n           i
                       O                     2
                                                                            3           x          n
                              P                                                          3          1
                               1
                          θ        P                                     2      x
                                    2        n                                   2
                                              1       n                                            n
                                        P              3                x  1                        3
                                          3
                                             T
                                                                          P       P       P        T
                                                                           1       2       3
                       FIGURE 11.7.2                              FIGURE 11.7.3
                       A rotating tube containing spring-connected  Coordinates of the particles within the tube.
                       particles.
                        This system has four degrees of freedom described by the coordinates x , x , x , and θ.
                                                                                            2
                                                                                              3
                                                                                         1
                       Our objective is to determine the generalized forces applied to the system corresponding
                       to these coordinates. (This example is a modified and extended version of a similar
                       example appearing in References 11.1 and 11.2.)
                        To determine the generalized forces, it is helpful to first determine the partial velocities
                       of the particles, the partial velocities of the mass center G of T and the partial angular
                       velocities of T. By using the procedures of Chapter 4, we find the angular velocity of T,
                       its mass center velocity, and the particle velocities to be:

                                                                      ˙
                                                        ˙
                                                     T
                                                                    2
                                                                   l
                                                   ωω = θn  , v G  = ( )θn                      (11.7.1)
                                                          3              2
                       and
                                                     v = ˙ x  n +(l +  x )θ ˙  n                (11.7.2)
                                                      P 1
                                                          11       1   2
                                                               2 +
                                                    v = ˙ x  n +( l  x )θ ˙  n                  (11.7.3)
                                                     P 2
                                                          2  1      2   2
                                                               3 +
                                                    v = ˙ x  n +( l  x )θ ˙  n                  (11.7.4)
                                                     P 3
                                                          3  1      3   2
                       where n , n , and n  are the unit vectors of Figures 11.7.2 and 11.7.3. From Eqs. (11.4.4)
                              1
                                        3
                                 2
                       and (11.4.15) we obtain the partial velocities and partial angular velocities:
                                                  ωω = ωω = ωω =  0  ,  ωω = n                  (11.7.5)
                                                                      T
                                                             T
                                                        T
                                                   T
                                                    ˙ x 1  ˙ x 2  ˙ x 3  ˙ θ  3
                       and
                                           v =  n ,  v P 1  =  0  ,  v =  0  ,  v = (l +  x  n )
                                                                     P 1
                                                             P 1
                                            P 1
                                             ˙ x 1  1  ˙ x 2  ˙ x 3  ˙ θ    1  2
                                           v =  0  ,  v  P 2  =  n ,  v =  0  ,  v = ( l  x  n )
                                                                         2 +
                                                             P 2
                                            P 2
                                                                     P 3
                                             ˙ x 1   ˙ x 2  1  ˙ x 3  ˙ θ     2  2
                                                                                                (11.7.6)
                                                                         3 + )
                                           v =  0  ,  v =  0  ,  v =  n ,  v = ( l x n
                                                                    P 3
                                                            P 3
                                                                     3
                                            P 3
                                                    P 3
                                             ˙ x 1  ˙ x 2   ˙ x 3  1  ˙ θ    3  2
   384   385   386   387   388   389   390   391   392   393   394