Page 283 - Elements of Distribution Theory
P. 283

P1: JZP
            052184472Xc09  CUNY148/Severini  June 2, 2005  12:8





                                                    9.4 Watson’s Lemma                       269

                        satisfies
                                                   ˆ
                                                                         +
                                             h(t) = h m (t) + O(t  a m+1 ) as t → 0 .
                        Consider the integral

                                                  T
                                           I n =  h(t)exp{−nt} dt, 0 < T ≤∞.
                                                0
                        Then
                                            m
                                               c j  (a j + 1)    1
                                       I n =             + O           as n →∞.
                                                               a
                                                 n  a j +1    n m+1 +1
                                            j=0
                        Proof. Fix 0 <	 < T . There exists a constant K such that
                                                 |h(t)|≤ K exp{bt}, t ≥ 	.
                        Hence, for sufficiently large n,

                              T
                                                   ∞                   K
                              h(t)exp{−nt}dt  ≤ K    exp{−(n − b)} dt ≤    exp{−(n − b)	}

                                                                      n − b


                                                                         exp{−n	}
                                                                    = O             as n →∞.
                                                                            n
                          Consider the integral

                                                     ˆ
                                  h(t)exp{−nt} dt =  h m (t)exp{−nt} dt +  R m (t)exp{−nt} dt
                                0                  0                    0
                                                   +
                        where R m (t) = O(t  a m+1 )as t → 0 .For any α> −1,
                                    	                 ∞                  ∞
                                     α                  α                 α
                                    t exp{−nt} dt =    t exp{−nt} dt −    t exp{−nt} dt.
                                  0                 0
                        Note that

                                                ∞                 (α + 1)
                                                   α
                                                  t exp{−nt} dt =   α+1
                                                0                  n
                        and

                                          ∞                  ∞
                                             α                 α
                                 exp{n	}    t exp{−nt} dt =    t exp{−n(t − 	)} dt

                                                             ∞

                                                                    α
                                                         =    (t + 	) exp{−nt} dt = O(1)
                                                            0
                        as n →∞.It follows that

                                            α              (α + 1)
                                           t exp{−nt} dt =   α+1  + O(exp{−n	}).
                                         0                  n
                          Hence, for any 	> 0,
                                       	                 m
                                                            c j  (a j + 1)
                                       ˆ
                                       h m (t)exp{−nt} dt =     a j +1  + O(exp{−n	}).
                                     0                   j=0   n
   278   279   280   281   282   283   284   285   286   287   288