Page 285 - Elements of Distribution Theory
P. 285

P1: JZP
            052184472Xc09  CUNY148/Severini  June 2, 2005  12:8





                                                    9.4 Watson’s Lemma                       271

                        Hence, using the change-of-variable t =− log(u),
                                          (z)     1     ∞           x−1
                                               =         (1 − exp(−t))  exp(−zt) dt
                                        (z + x)   (x)  0
                        and an asymptotic expansion for this integral may be derived using Watson’s lemma.
                          Note that we may write
                                                                           x−1
                                                                1 − exp(−t)

                                                           x−1
                                                     x−1
                                          [1 − exp(−t)]  = t
                                                                    t
                        and, as t → 0,
                                           1 − exp(−t)         1             2
                                                       x−1
                                                         = 1 − (x − 1)t + O(t );
                                               t               2
                        hence,
                                                          1
                                   
            x−1  x−1          x     x+1
                                    1 − exp(−t)   = t   − (x − 1)t + O(t   )as t → 0.
                                                          2
                        It now follows from Watson’s lemma that
                              ∞                             (x)   1       (x + 1)      1

                                (1 − exp(−t)) x−1  exp(−zt) dt =  − (x − 1)      + O
                             0                              z x   2        z x+1      z x+2
                        and, hence, that
                                        (z)     1   1 x(x − 1)      1
                                             =    −          + O          as z →∞.
                                      (z + x)   z x  2  z x+1      z x+2
                          Watson’s lemma may be generalized to allow the function h in
                                                      T
                                                       h(t)exp{−nt} dt
                                                    0
                        to depend on n.

                        Theorem 9.13. Let h 1 , h 2 ,... denote a sequence of real-valued continuous functions on
                        [0, ∞) satisfying the following conditions:
                           (i) sup h n (t) = O(exp(bt)) as t →∞ for some constant b.
                                n
                          (ii) There exist constants c n0 , c n1 ,..., c n(m+1) ,n = 1, 2,...,, a 0 , a 1 ,..., a m+1 ,


                                                −1 < a 0 < a 1 < ··· < a m+1
                        such that
                                                             m
                                                    ˆ             a j
                                                    h nm (t) =  c nj t
                                                            j=0
                        satisfies
                                                         ˆ
                                                  h n (t) = h nm (t) + R nm (t)
                        where
                                                                         +
                                             sup R nm (t) = O(t  a m+1 ) as t → 0 .
                                              n
   280   281   282   283   284   285   286   287   288   289   290