Page 284 - Elements of Distribution Theory
P. 284

P1: JZP
            052184472Xc09  CUNY148/Severini  June 2, 2005  12:8





                            270                       Approximation of Integrals

                                                                +
                            Note that, since R m (t) = O(t  a m+1 )as t → 0 , there exists a constant K m such that for
                            sufficiently small 	,
                                                        |R m (t)|≤ K m t  a m+1 .

                              Hence,
                                     	                        	                    (a m+1 + 1)
                                                              t  a m+1                       .
                                     |R m (t)| exp{−nt} dt ≤ K m   exp{−nt} dt ≤ K m  a
                                   0                        0                       n m+1 +1
                            It follows that
                                        T
                                I n =   h(t)exp{−nt} dt
                                      0
                                        	                   	                    T
                                        ˆ
                                   =    h m (t)exp{−nt} dt +  R m (t)exp{−nt} dt +  h(t)exp{−nt} dt
                                      0                   0
                                      m
                                        c j  (a j + 1)                  1         exp{−n	}
                                   =              + O(exp{−n	}) + O          + O            ,
                                                                      a
                                           n a j +1                  n m+1 +1         n
                                     j=0
                            proving the theorem.
                            Example 9.4 (Exponential integral). Consider the exponential integral function defined
                            by
                                                               1
                                                             ∞

                                                    E 1 (z) =    exp(−u) du;
                                                            z  u
                            this function arises in a number of different contexts. See, for example, Barndorff-Nielsen
                            and Cox (1989, Example 3.3) for a discussion of a distribution with density function given
                            by E 1 .
                              Consider an asymptotic expansion for E 1 (z) for large z.In order to use Watson’s lemma,
                            the integral used to define E 1 must be rewritten. Note that, using the change-of-variable
                            t = u/z − 1,
                                              1                         1
                                            ∞                       ∞

                                               exp(−u) du = exp(−z)         exp(−zt) dt.
                                              u                       1 + t
                                           z                       0
                            The function h(t) = 1/(1 + t) satisfies the conditions of Watson’s lemma with a j = j and
                                    j
                            c j = (−1) , j = 0, 1,.... Hence, for any m = 0, 1,...,

                                                            m
                                                                  j  j!       1
                                            E 1 (z) = exp(−z)  (−1)    + O         .
                                                                   z  j+1   z m+1
                                                           j=0
                            Since this holds for all m we may write
                                                            ∞
                                                                  j  j!
                                              E 1 (z) ∼ exp(−z)  (−1)    as n →∞.
                                                                   z  j+1
                                                            j=0
                            Example 9.5 (Ratio of gamma functions). Consider an asymptotic expansion of the ratio
                            of gamma functions  (z)/ (z + x) for large values of z and fixed x.By Theorem 9.2 we
                            can write
                                                  (z)      1     1  z−1    x−1
                                                       =         u   (1 − u)  dx.
                                                (z + x)    (x)  0
   279   280   281   282   283   284   285   286   287   288   289