Page 148 - Engineering Digital Design
P. 148

3.12 WORKED EXAMPLES                                                 119








                                                          (a)





                                                                               AB C
                                                                      L V      00 0
                                                                      H V      00 1
                                                                      H V      01 0
                                                                      H V      01 1
                                                                      L V      10 0
                                                                      H V      10 1
                                                                      L V      11 0
                                                      H V H V H V     H V       11 1



                              (b)                              (c)                   (d)
                 FIGURE 3.41
                 Circuit and truth table representations for the function F of Example 3.5. (a) Logic circuit, (b) CMOS
                 circuit, (c) Physical truth table, (d) Logic truth table.


                 [3] (X + Y)(X + Z)[Y(X + Z) + Y] = (X + YZ)[Y(X + Z) + Y] Distributive law
                                                                           [Eqs.(3.12)]
                                               = (X + YZ)[X + Y + Z]     Absorptive law
                                                                           [Eqs.(3.13)]
                                               = X + YZY + YZZ           Distributive law
                                               = X + YZ                  AND and OR laws


                 [4] (b 0 c) + (ab}(a + c} = (b 0 c) + (a + b)(ac) Eqs. (3.23); DeMorgan's laws
                                                             [Eqs. (3.15)]
                                      = (b O c) + aac + abc} Factoring law [Eqs. (3.12)]
                                      = (be + bc + abc}    Eq. (3.5); AND and OR laws
                                      = (be + be)          Factoring law; AND and OR laws
                                      = b 0 c              Eqs. (3.5) and (3.23)


                 [5] (X + Y) O (X 0 F) = (X + 7) O (XY + XY] Eq. (3.4)
                                    = (X + Y)(XY + XY )     Corollary II [Eq. (3.26)]
                                    = XY + XY              Factoring law; AND and OR laws
                                    = XY                   OR laws
   143   144   145   146   147   148   149   150   151   152   153