Page 140 - Entrophy Analysis in Thermal Engineering Systems
P. 140

134                              Entropy Analysis in Thermal Engineering Systems



                                                              ð
                                                     ð
            _                                   _ n H 2 O h H 2 O Þ   h H 2 O Þ 0
                                                           P
                             ð
                    ð
                         0       s  + _n O 2 O 2 R
           Φ ¼ _n H 2 O s H 2 O Þ   _n H 2 H 2  s Þ +                  (9.9)
                                                         T 0
          Eliminating (h H 2 O ) P between Eqs. (9.4) and (9.9), we find
                                          h Þ   _n H 2 O h H 2 O Þ
                          _  ð  _ n H 2 H 2  + _n O 2 O 2 R  ð  0
                                 h
                         Φ ¼
                                           T 0
                                                           _ W FC
                             ð        ð           s Þ                 (9.10)
                                   0      s  + _n O 2 O 2 R
                      + _n H 2 O s H 2 O Þ   _n H 2 H 2
                                                           T 0
                  _
          Setting Φ equal to zero leads to an expression for the maximum fuel cell
          power. Hence,

                                       ð        ð           s Þ       (9.11)
                                             0      s  + _n O 2 O 2 R
                         ¼ _ E in + T 0 _n H 2 O s H 2 O Þ   _n H 2 H 2
                 _ W FC
                     max
          where
                         _
                                                      ð
                              ð
                                                            0
                         E in ¼ _n H 2 H 2  h Þ   _n H 2 O h H 2 O Þ  (9.12)
                                  h
                                     + _n O 2 O 2 R
          The expression that we found for the maximum fuel cell power is neither the
          change in Gibbs function at reaction temperature nor that at the surrounding
          temperature T 0 . However, if the reactants enter the fuel cell at the surround-
          ing temperature, i.e., T R ¼T 0 , Eq. (9.11) reduces to

                                       ð          G H 2 O Þ           (9.13)
                                                         0
                                     ¼ G H 2  + G O 2
                             _ W FC
                                  max
          where G is the Gibbs function defined as
                                                                      (9.14)
                                    G ¼ H  T  S
          In Eq. (9.13), G i (i:H 2 ,O 2 ,H 2 O) is calculated at the surrounding temper-
          ature and pressure.
             The maximum conversion efficiency of the fuel cell is obtained by

                                         ð        ð  s       s Þ
             η   ¼        max  ¼ 1+ T 0       0         + _n O 2 O 2 R  (9.15a)
                                     _ n H 2 O s H 2 O Þ   _n H 2 H 2
                     _ W FC
              max      _ E in                      _ E in
          Or, per molar flowrate of hydrogen, one may write
                                      ð s H 2    Þ   s H 2 O Þ
                                                     ð
                         η   ¼ 1 T 0     +0:5s O 2 R       0         (9.15b)
                                     ð           Þ   h H 2 O Þ
                          max
                                                     ð
                                                           0
                                      h H 2
                                         +0:5h O 2 R
          Also, the amount of heat dissipated to the surrounding at maximum effi-
          ciency is
                       _
                                     ð
                                             ð
                                                         s Þ
                        0
                                          0
                                                 s
                      Q ¼ T 0 _n H 2 O s H 2 O Þ   _n H 2 H 2  + _n O 2 O 2 R  (9.16)
   135   136   137   138   139   140   141   142   143   144   145