Page 180 - Entrophy Analysis in Thermal Engineering Systems
P. 180

Exergy                                                       175


                                   ch
              Table 11.1 Comparison of ψ with traditional chemical exergy ξ ch taken from Ref. [2],
              for several fuels at standard temperature and pressure (298.15K, 1bar).
                        Chemical     LHV (kJ/  HHV (kJ/  ψ ch  (kJ/  ξ ch (kJ/  Δ
              Fuel      formula      mol)      mol)      mol)     mol)    (%)
              Hydrogen  H 2          241.8     285.8     234.4    236.1   0.73
              Methanol  CH 3 OH      676.2     764.2     705.2    722.3   2.42
              Methane   CH 4         802.5     890.6     814.8    831.7   2.07
              Ethanol   C 2 H 5 OH   1278      1410      1330     1364    2.56
              Acetylene  C 2 H 2     1257      1301      1236     1266    2.43
              Ethylene  C 2 H 4      1323      1411      1329     1361    2.41
              Ethane    C 2 H 6      1429      1561      1464     1496    2.19
              Propane   C 3 H 8      2043      2219      2102     2154    2.47
              Butane    C 4 H 10     2657      2877      2740     2806    2.41
              Pentane   C 5 H 12     3272      3536      3378     3463    2.52
              Octane    C 8 H 18     5116      5512      5294     5413    2.25







                   11.5 A simple relation for chemical exergy
                   As discussed in Chapter 8, the maximum theoretical work (chemical
              exergy) obtainable from a unit mole of fuel represented by C x H y O z obeys

                                       ψ ¼C + F ΛðÞ                     (11.22)
                                        ch
              where the magnitude of function F ΛðÞ is negligible compared to C. Also,


                                      C¼ HHV + T 0 C 1                  (11.23)

                         y                         y  z
                   C 1 ¼    s H 2 O lðÞ,0  + xs CO 2 ,0 +  x  +  s O 2 ,0  s f ,0  (11.24)
                         2                         4  2
              where HHV is the higher heating value, and subscript 0 refers to 298.15K
              and 1bar.
                 A simple relation is now derived for ψ  ch  using the entropies and
              enthalpies of water, carbon dioxide, and oxygen at standard temperature
              and pressure taken from the NIST database [3]. The objective is to find
              an equation for ψ in terms of the elemental composition of fuel. Using
                             ch
              the properties given in Table 11.2 in Eq. (11.24), one obtains

                         y                           y   z
                                     ð
                   C 1 ¼   ð 69:95Þ + x 213:79Þ +  x  +    ð 205:15Þ
                         2                           4   2
                        s f ,0 J=mol Kð  Þ                              (11.25)
   175   176   177   178   179   180   181   182   183   184   185