Page 135 - Finite Element Modeling and Simulations with ANSYS Workbench
P. 135

120                   Finite Element Modeling and Simulation with ANSYS Workbench



              We can also express stresses in terms of strains by solving the above equation


                                                            
                              σ         1   ν      0      ε x     ε x0  
                               x
                                    E                            
                                                            
                              σ  =     2   ν  1    0       ε y  −   ε y0     (4.5)
                               y
                                  1  −ν  0  0   1 (  −ν 2         
                                                           
                                                        )/
                                                            
                                                             
                              τ xy                        γ xy    γ xy0 
            or,
                                              σ= E
                                                   ε+ σ 0
            where σ= −ε 0  is the initial stress.
                        E
                   0
              For plane strain case, we need to replace the material constants in the above equations in
            the following fashion:
                                         E             ν
                                  E →        ;   ν  →     ;   G →  G                   (4.6)
                                       1 − ν 2       1 − ν

              For example, the stress is related to strain by


                                                                   
                      σ                 1  − ν   ν        0      ε     ε x0  
                       x
                                                                       x
                                E                                        
                                                                   
                      σ  =                ν    1  − ν     0        ε  −   ε y0   
                                                                       y
                       y
                                                                    
                          (1  +ν)(1  −ν)2   0    0    (1  −ν) 2/  γ       
                                                              2
                                                                   
                      τ xy                                        xy     γ xy0 
            in the plane strain case.
              Initial strain due to a temperature change (thermal loading) is given by the following for
            the plane stress case
                                                       ∆
                                              ε x0     α T 
                                                      
                                              ε y0   = α T∆                         (4.7)
                                                    
                                                    0  
                                             γ xy0     
            where α is the coefficient of thermal expansion, ΔT the change of temperature. For the
            plane strain case, α should be replaced by (1 + ν)α in Equation 4.7. Note that if the struc-
            ture is free to deform under thermal loading, there will be no (elastic) stresses in the
            structure.

            4.2.4  Strain and Displacement Relations

            For small strains and small rotations, we have,

                                   ∂u             ∂v             ∂u   ∂v
                              ε=     ,       ε=     ,      γ xy  =  +
                               x
                                              y
                                   ∂x             ∂y             ∂y   ∂x
   130   131   132   133   134   135   136   137   138   139   140