Page 148 - Finite Element Modeling and Simulations with ANSYS Workbench
P. 148

Two-Dimensional Elasticity                                                  133



                                               q B
                                     q                                f
                              q A                     f A             B
                                  s
                                                B                      B
                               A       L             A





            FIGURE 4.16
            Traction applied on the edge of a Q4 element.

            where t is the thickness, L the side length, and u  the component of displacement normal
                                                       n
            to the edge AB.
              For the Q4 element (linear displacement field), we have

                                       us() =  ( −  sL u nA + /  )
                                              1
                                                         (
                                                  /
                                                    )
                                        n                 s Lu nB
              The traction q(s), which is also linear, is given in a similar way
                                        qs() =  ( −  sL q A + /  )
                                                         (
                                              1
                                                    )
                                                  /
                                                          s Lq B
              Thus, we have
                               L
                                               sL 
                            1             1  − /                q A 
                       W q =  t ∫      u nA  u nB         1  − /  sL      ds
                                                         sL
                                                               /
                                              /
                            2               sL                q B 
                               0
                                              L
                                                     /
                                                                      /
                                 1               1 (  − sL) 2  ( sL 1)(/  − sL)   q A 
                                             ∫
                               =   u nA  u nB  t                       ds   
                                            
                                                        /
                                 2              ( sL 1)(/  − sL)  ( (sL ) 2     q B 
                                                                  /
                                              0
                                 1           tL 2   1   q A 
                               =    u nA  u nB         
                                 2           6 1    2   q B 
                                               
                                 1            f A 
                               =   u nA  u nB     
                                            
                                              f
                                 2            B 
            and hence the equivalent nodal force vector is
                                           f A   tL 2  1  q A 
                                             =          
                                                  
                                           f B   6 1  2  q B 
              Note, for constant q, we have
                                               f A   qtL   1
                                                =     
                                                        1
                                               f B   2   
   143   144   145   146   147   148   149   150   151   152   153