Page 148 - Finite Element Modeling and Simulations with ANSYS Workbench
P. 148
Two-Dimensional Elasticity 133
q B
q f
q A f A B
s
B B
A L A
FIGURE 4.16
Traction applied on the edge of a Q4 element.
where t is the thickness, L the side length, and u the component of displacement normal
n
to the edge AB.
For the Q4 element (linear displacement field), we have
us() = ( − sL u nA + / )
1
(
/
)
n s Lu nB
The traction q(s), which is also linear, is given in a similar way
qs() = ( − sL q A + / )
(
1
)
/
s Lq B
Thus, we have
L
sL
1 1 − / q A
W q = t ∫ u nA u nB 1 − / sL ds
sL
/
/
2 sL q B
0
L
/
/
1 1 ( − sL) 2 ( sL 1)(/ − sL) q A
∫
= u nA u nB t ds
/
2 ( sL 1)(/ − sL) ( (sL ) 2 q B
/
0
1 tL 2 1 q A
= u nA u nB
2 6 1 2 q B
1 f A
= u nA u nB
f
2 B
and hence the equivalent nodal force vector is
f A tL 2 1 q A
=
f B 6 1 2 q B
Note, for constant q, we have
f A qtL 1
=
1
f B 2