Page 143 - Finite Element Modeling and Simulations with ANSYS Workbench
P. 143

128                   Finite Element Modeling and Simulation with ANSYS Workbench



              Displacement u or v on the element can be viewed as functions of (x, y) or (ξ, η). Using the
            chain rule for derivatives, we have
                                     ∂ 
                                                   y 
                                     u     ∂x   ∂  ∂u      ∂ u 
                                                           
                                      ∂ξ   ∂ξ   ∂ξ   ∂x    ∂  x 
                                                             J
                                        =             =                       (4.26)
                                                   y
                                     ∂u     ∂x  ∂  ∂u    ∂ u 
                                                      
                                                     
                                                        y
                                                          
                                        
                                    
                                                     
                                                                  
                                                              
                                     ∂η   ∂η   ∂η  ∂ y    ∂ y 
            where J is called the Jacobian matrix of the transformation.
              From Equation 4.25, we calculate
                                 J =  x 13  y 13    ,  J −1  =  1   y 23  −y 13    (4.27)
                                    
                                                          
                                     x
                                     23   y 23       2 A  −x 23  x 13  
                                       2
                                     = A has been used (A is the area of the triangle).
                                 23
            where det J = xy 23  − xy 13
                         13
              From Equations 4.26, 4.27, 4.16, and 4.21, we have
                          ∂ 
                         u                     ∂u 
                                               
                          ∂    1   y 23  −y 13   ∂ξ   1   y  − 13  1 u  − u  
                                                   
                            
                         x
                                                                   y
                                               
                            =                  =      23           3        (4.28)
                                                            x
                         ∂u   2 A   −x 23  x 13    ∂u   2A  − 23  x 13   2 u  − u 3 
                          ∂ 
                         y                     ∂η
                                                
              Similarly,
                                     ∂ 
                                     v
                                        
                                     ∂    1   y 23  −y 13 v 1  − v 3 
                                     x
                                        =                                       (4.29)
                                                           
                                     ∂v   2 A  −x 23  x 13   v 2  − v 3 
                                     ∂ 
                                     y
                                       
              Using the results in Equations 4.28 and 4.29, and the relations ε= Du  = DNd  = Bd, we
            obtain the strain–displacement matrix,
                                       y 23  0    y 31  0    y 12  0  
                                     1                               
                                B =      0    x 32  0   x 13   0   x 21               (4.30)
                                    2A                                
                                       
                                       x 32  y 23  x 13  y 31  x 21  y 12 
            which is the same as we derived earlier in Equation 4.19.
              We should note the following about the CST element:
              •  Use in areas where the strain gradient is small.
              •  Use in mesh transition areas (fine mesh to coarse mesh).
              •  Avoid using CST in stress concentration or other crucial areas in the structure,
                 such as edges of holes and corners.
              •  Recommended only for quick and preliminary FE analysis of 2-D problems.
   138   139   140   141   142   143   144   145   146   147   148