Page 242 - Finite Element Modeling and Simulations with ANSYS Workbench
P. 242

Three-Dimensional Elasticity                                                227



              Whenever possible, one should try to apply higher-order (quadratic) elements, such as
            10-node tetrahedron and 20-node brick elements for 3-D stress analysis. Avoid using the
            linear, especially the four-node tetrahedron elements in 3-D stress analysis, because they
            are inaccurate for such purposes. However, it is fine to use them for deformation analysis
            or in vibration analysis (see Chapter 8).

            7.4.3  Formulation of a Linear Hexahedral Element Type

              Displacement Field in the Element:
                                     8
                                                               8
                                                  8
                                 u = ∑ N u i ,  v = ∑ Nv i ,  w = ∑  N w i             (7.11)
                                                      i
                                         i
                                                                   i
                                     i=1          i=1          i=1
              Shape Functions:
                                               1
                                       ξη
                                    N 1 (, ,) ζ =  1 ( −  ξ )( 1 −  η )( 1 −  ζ ),
                                              8
                                               1
                                    N 2 (, ,) ζ =  1 ( +  ξ )( 1 −  η )( 1 −  ζ ),
                                       ξη
                                               8                                       (7.12)
                                                      )( +
                                                            )( −
                                    N 3 ((, ,)ξη ζ =  1 ( +  ξ 1  η 1  ζ ),
                                                 1
                                               8

                                               1
                                       ξη
                                    N 8 (, ,) ζ =  ( −1  ξ )( +1  η )( +1  ) ζ
                                               8
              Note that we have the following relations for the shape functions:
                                     N i (,ξη ζ j ) =  δ ij ij, =,  1 , ,… , .
                                                            2
                                                                 8
                                            j ,
                                         j
                                      8
                                     ∑   i N (, ,)ξη ζ = 1
                                     i=1
              Coordinate Transformation (Mapping):
                                                  8
                                                               8
                                      8
                                 x = ∑  N x ,  y = ∑  Ny ,  z = ∑  N z                 (7.13)
                                                                   ii
                                                      ii
                                         ii
                                     i=1          i=1          i=1
              That is, the same shape functions are used for the element geometry as for the displace-
            ment field. This kind of element is called an isoparametric element. The transformation
            between (ξ, η, ζ	) and (x, y, z) described by Equation 7.13 is called isoparametric mapping
            (see Figure 7.6).
              Jacobian Matrix:
                                     ∂u   ∂x   ∂y    ∂z    ∂u 
                                     ∂ξ   ∂ξ   ∂ξ   ∂ξ      
                                                           ∂x 
                                     ∂u    ∂x  ∂y    ∂z    ∂u
                                        =                 
                                     ∂η   ∂η   ∂η   ∂η    ∂y                     (7.14)
                                     ∂u    ∂x  ∂y    ∂z   ∂u 
                                                          
                                             ζ
                                     ∂ζ   ∂ζ   ∂ζ    ∂ζ   ∂z 
                                                          
                                                ≡ ≡ J Jacobian matrix
   237   238   239   240   241   242   243   244   245   246   247