Page 54 - Finite Element Modeling and Simulations with ANSYS Workbench
P. 54

Bars and Trusses                                                             39



                  The global FE equation is,
                                      05 .  05 .  0  0  − 05 .  − 05 . u 1    F 1X 
                                                                         1
                                                  −   −     −         
                                          15 .  0  1   05 .  05 .    1 v     F 1Y  
                                              1   0    − 1   0 u 2      F 
                                                                         2X 
                                                                 
                                   5
                           1260 ×  10                              =   
                                                  1    0     0     2 v     F 2Y  
                                                       15    05 u     F 
                                                                
                                                              .
                                                         .
                                                                  3     3X  
                                                               5
                                                                
                                      Sym.                  0.5    v 3      F 3Y  
                  Load and boundary conditions (BCs):
                                       u 1 =  v 1 =  v 2 =  0, and  v 3 ′ =  0,
                                       F X2 =  ,  =  0.
                                            P F x3 ′
                  From the transformation relation and the BCs, we have
                                        2    2   3 u    2
                                   ′ ν= −         =  ( − 3 u  + v )  = 0,
                                                                3
                                   3
                                        2    2   3 v     2
                 that is,
                                                u 3  − v 3  = 0
                  This is a multipoint constraint (MPC).
                  Similarly, we have a relation for the force at node 3,
                                        2    2  F X3   2
                                 F x3 ′ =         =   ( F X3 +  F Y3 )  =  0,
                                        2   2   F Y3    2
                 that is,
                                               F 3X  + F 3Y  = 0
                  Applying the load and BCs in the structure FE equation by “deleting” the first,
                   second, and fourth rows and columns, we have
                                              1  − 1  0 u 2     P 
                                                        
                                                               
                                                            
                                           5 
                                   1260 ×  10 − 1  1 5 .  0 5  u 3 = F  
                                                       .
                                                               
                                                        
                                            
                                                                 3X
                                                         
                                              0  0 5 .  0 5  v     F F Y3  
                                                       .
                                                         3   
                  Further, from the MPC and the force relation at node 3, the equation becomes,
                                             1  − 1  0 u 2     P 
                                                        
                                          5 
                                                           
                                   1260 ×  10 − 1  1 5 .  0 5  u 3 =    3 F X  
                                                      .
                                           
                                                        
                                                        
                                             0  0 5 .  0 5  u      
                                                      .
                                                         3    − −F X3  
                 which is
                                                1  − 1     P  
                                                      u
                                                            
                                             5 
                                     1260 ×  10 − 1  2   2   =  F X  
                                                              3 
                                              
                                                     
                                                0  1   u 3      
                                                               3 
                                                           −F X
                  The third equation yields,
                                            F X3 =− 1260 ×  10 5  u 3
   49   50   51   52   53   54   55   56   57   58   59