Page 52 - Finite Element Modeling and Simulations with ANSYS Workbench
P. 52

Bars and Trusses                                                             37



                  Assemble the structure FE equation,

                                    u 1  v 1  u 2  v 2  u 3  v 3
                                     1  1   − 1  − 1  0  0 u 1    F F X 
                                                                    1
                                            −   −                
                                                                    1
                                     1  1   1    1   0   0    1 v      F Y  
                                EA −   1  − 1  2  0  − 1  1 u 2  =   F X  
                                                                    2
                                   
                                2 L − 1  − 1  0  2    1   − 1    2 v      F Y  
                                                             
                                   
                                                                    2
                                     0  0   − 1  1   1   − 1 u 3    F X 
                                                                    3
                                     0 0  0  1  − 1  − 1  1    v      
                                                                    3
                                                             3    F Y 
                  Load and boundary conditions (BCs):
                                   u 1 =  v 1 =  u 3 =  v 3 =  0,  F X2 =  P 1 ,  F Y2 =
                                                                  P 2
                  Condensed FE equation,
                                          EA 2   0 u 2    P 1 
                                             
                                                          P 2  
                                           2 L 0  2   v 2    =  
                                             
                                                  
                                                         

                  Solving this, we obtain the displacement of node 2,
                                              u 2   L  
                                                       P 1
                                                =    
                                                      
                                              v 2    EA P 2  
                  Using Equation 2.34, we calculate the stresses in the two bars,
                                                          
                                                          0
                                                          
                                                          0
                                   E  2                L      2
                                                                       2 P
                               σ=       −  1  −1  1   1     =  ( 1 P  + )
                                1
                                                           1 P
                                   L  2               EA     2A
                                                          
                                                           2 P
                                                          
                                                          
                                                           1 P
                                                          
                                                           2 P
                                                           =
                               σ=  E  2  1  −1  −1   1   L     2  ( 1 P  − )
                                                                       2 P
                                        
                                2
                                   L  2               EA     2A
                                                           0
                                                          
                                                           0
                                                          
                  Check the results: Again, we need to check the equilibrium conditions, symmetry, anti-
                 symmetry, and so on, of the FEA results.
                 EXAMPLE 2.4:  (MULTIPOINT CONSTRAINT)
                                                          y
                                                                 x
                                      P                   3
                                          2        2
                                          1
                                     L       Y
                                                    3
                                                 45°
                                          1
                                                      X
   47   48   49   50   51   52   53   54   55   56   57