Page 64 - T. Anderson-Fracture Mechanics - Fundamentals and Applns.-CRC (2005)
P. 64
1656_C02.fm Page 44 Thursday, April 14, 2005 6:28 PM
44 Fracture Mechanics: Fundamentals and Applications
TABLE 2.1
Stress Fields Ahead of a Crack Tip for Mode I and Mode II
in a Linear Elastic, Isotropic Material
Mode I Mode II
θ
θ
θ
σ K I cos θ 1 sin− θ sin 3 − K II sin 2 + cos cos 3θ
xx 2 2 2
2π r 2π r 2 2 2
θ
θ
σ yy K I cos θ 1 sin+ θ sin 3 K II sin θ cos θ cos 3
2π r 2 2 2 2π r 2 2 2
θ
θ
τ xy K I cos θ sin θ cos 3 K II cos θ 1 sin− θ sin 3
2π r 2 2 2 2π r 2 2 2
0 (Plane stress) 0 (Plane stress)
σ zz νσ xx + σ ) (Plane strain) νσ xx + σ ) (Plane strain)
(
(
yy
yy
τ , τ 0 0
xz yz
Note: υ is Poisson’s ratio.
material can be written as
K
θ
limσ () I = I f () I ( ) (2.37a)
r→0 ij 2π r ij
K
limσ () = II f () ( ) (2.37b)
II
θ
II
r→0 ij 2π r ij
K
θ
limσ (III ) = III f (III ) ( ) (2.37c)
r→0 ij 2π r ij
for Modes I, II, and III, respectively. In a mixed-mode problem (i.e., when more than one loading
mode is present), the individual contributions to a given stress component are additive:
σ ij (total ) σ ij I ( ) σ = ij ( II) + σ + ( ij III) (2.38)
Equation (2.38) stems from the principle of linear superposition.
Detailed expressions for the singular stress fields for Mode I and Mode II are given in Table 2.1.
Displacement relationships for Mode I and Mode II are listed in Table 2.2. Table 2.3 lists the
nonzero stress and displacement components for Mode III.
TABLE 2.2
Crack-Tip Displacement Fields for Mode I and Mode II
(Linear Elastic, Isotropic Material)
Mode I Mode II
u K I r cos θ κ −+ 2 θ K II r sin θ κ ++ 2 θ
12sin
12cos
x 2 2 2 2
2 µ 2 π 2 µ 2 π
θ
u K I r sin θ κ +− 2 θ − K II r cos κ −− 2 θ
12cos
12sin
y
2 µ 2 π 2 2 2 µ 2 π 2 2
Note: µ is the shear modulus. κ = 3 − 4ν (plane strain) and κ = (3 − ν)/(1 + ν) (plane stress).