Page 106 - Fundamentals of Communications Systems
P. 106

3.20  Chapter Three

                       Step 2:
                                        y   y
                                                              2
                                                                                   2
                         p Y (y) = U (y)          p X 1 X 2  x 1 ,  y − x 1 2  + p X 1 X 2  x 1 , −  y − x 2 1  dx 1
                                           2
                                      −y   y − x 2
                                               1
                       If in this example X 1 and X 2 are independent (ρ = 0) and zero mean Gaussian random
                       variables with equal variances, the joint density is given as
                                                                     2
                                                          1         x + x 2 2
                                                                     1
                                                (x 1 , x 2 ) =  exp −
                                           f X 1 X 2        2           2
                                                        2πσ          2σ
                                                            X          X
                       and f Y (y) reduces to
                                                                 2
                                                      y         y
                                              f Y (y) =  2  exp −  2  U (y)               (3.25)
                                                      σ        2σ
                                                       X         X
                         This PDF is known as the Rayleigh density and appears quite frequently in commu-
                       nication system analysis.


                       One-to-One Transformations
                       Consider a one-to-one transformation of the form

                                                Y 1 = g 1 (X 1 , X 2 , ··· , X n )

                                                Y 2 = g 2 (X 1 , X 2 , ··· , X n )
                                                    .
                                                    .
                                                    .
                                                Y n = g n (X 1 , X 2 , ··· , X n )        (3.26)

                       Since the transformation is one-to-one, the inverse functions exist and are
                       given as


                                                 X 1 = h 1 (Y 1 , Y 2 , ..., Y n )
                                                 X 2 = h 2 (Y 1 , Y 2 , ..., Y n )
                                                     .
                                                     .
                                                     .
                                                 X n = h n (Y 1 , Y 2 , ..., Y n )        (3.27)

                       Since the probability mass in infinitesimal volumes in both the original X coor-
                       dinate system and the Y coordinate system must be identical, the PDF of the
                       Y ’s is given as

                               p Y (y 1 , y 2 , ... y n ) =|J |p X (h 1 (y 1 , y 2 , ... y n ), ... , h n (y 1 , y 2 , ... y n ))
   101   102   103   104   105   106   107   108   109   110   111