Page 49 - Fundamentals of Reservoir Engineering
P. 49
CONTENTS XLIX
1637Q T k
+
−
m(p ) m(p ) = 1 log t log − 3.23 0.87S′ 1 (8.56) 280
+
i
wf
( c) r
kh φµ iw 2
(m(p ) m(p ) ) k
−
−
+
S′ = S DQ = 1.151 i wf 1 hr − log 2 + 3.23 (8.57) 280
1
1
( c)r
m φµ iw
kh
′
′
∆
=
−
(m(p ) m(p )) Q (m (t + ∆ t D + t ) m ( t D + t ))
−
wf
D
D
D
D
D
i
1
1422T 1 max max (8.58) 281
+ Qm (t ) Q S′ 2
′ +
D
D
2
2
kh kh (m(p ) m(p )) Q m (t ) Q S′ (8.59) 281
′
−
wf
i
1422T (m(p ) m(p )) = 1422T i − ws + 2 D D ′ + 2 2
(m(p ) − m(p ) k
′
−
−
+
S′ = S DQ = 1.151 ws 1 hr wf 1 hr − log 2 + 3.23 (8.60) 281
2
2
( c) r
m φµ iw
(c)
φµ p A
t = SSS (t ) (8.61) 286
SSS
0.000264k DA SSS
p k(S )
m(p) = ro o dp (8.62) 289
′
p b µ o B o
k rg µ B
or RR + o o (8.63) 289
=
s
µ g k ro B g
4t
′
m(t ) = 2 π t DA + 1 2 ln D − 1 2 m′ D(MBH) (t ) (8.64) 290
D
DA
D
γ
S ∂ R ∂ B S ∂ B g
g
c = o B g s − o − + c S wc + c f (8.65) 290
t
w
B o ∂ p ∂ p B ∂ p
g
1 ∂ ∂ β φµ c ∂ β
= (8.66) 291
r ∂ r r ∂ k t ∂
1 ∂ r ∂ β = ∂ β D (8.67) 292
D
r ∂ r D D r ∂ D t ∂ D
D
α
f(p) = β D (t ) S (8.68) 292
+
D
q
n
n
α f(p) = ∆ q β D (t D n − t D j 1 ) q S (8.69) 292
+
j
n
j1 −
=
4t′
′
β o (t D − t D ) = β D (t ) ′ = 2π t′ + 1 2 ln D − 1 2 β D(MBH) (t ) (8.70) 292
DA
DA
D
j 1
n
−
γ
4t′
β D (t D − t D ) = β D (t ) ′ = 1 2 ln D (8.71) 293
D
n
j 1
−
γ