Page 153 - Fundamentals of The Finite Element Method for Heat and Fluid Flow
P. 153

STEADY STATE HEAT CONDUCTION IN MULTI-DIMENSIONS
                        5.6.1 Galerkin’s method for linear triangular axisymmetric elements
                        The Galerkin method for axisymmetric equations results in the following integral form 145
                                                k r ∂  ∂T       ∂ T
                                                                 2
                                            N i       r     + k z  2  + G d
 = 0            (5.65)
                                           
    r ∂r    ∂r      ∂z
                           The spatial approximation of temperature is given by Equation 5.61. As in the previous
                        sections, the substitution of the spatial approximation will result in the familiar final form
                        of the matrix equation as
                                                       [K]{T}={f}                           (5.66)
                        where
                                                     T                  T
                                           [K] =   [B] [D][B]d
 +   h[N] [N]d	              (5.67)

                           Here,
                                                               
                                            ∂T       ∂N i ∂N j ∂N k
                                              
                                              
                                            ∂x       ∂r  ∂r   ∂r     1   b i b j b k
                                              
                                     [B] =       =                 =                      (5.68)
                                                     ∂N i ∂N j ∂N k    2A c i c j c k
                                           ∂T 
                                              
                                              
                                            ∂y       ∂z   ∂z   ∂z
                        and

                                                             k r 0
                                                      [D] =                                 (5.69)
                                                             0 k z
                           In Equation 5.67, the volume 
 is defined as
                                                       dV = 2πr dA                          (5.70)
                        where r is the radius, which varies and can be approximated using linear shape functions as
                                                  r = N i r i + N j r j + N k r k           (5.71)
                           Substituting into Equation 5.67 and integrating, we obtain
                                                2                      2          
                                                b   b i b j b i b k      c  c i c j c i c k
                                        2πrk r   i    2          2πrk z   i   2
                                   [K] =       b i b j  b j  b j b k    +   c i c j  c j  c j c k  
                                          4A               2      4A               2
                                               b i b k b j b k  b k     c i c k c j c k  c k
                                                                   
                                                  3r i + r j r i + r j 0.0
                                           2πhl ij
                                         +         r i + r j r i + 3r j 0.0               (5.72)
                                            12
                                                    0.0     0.0  0.0
                        where
                                                         r i + r j + r k
                                                      r =                                   (5.73)
                                                              3
                           Similarly,

                                         T            T             T
                             {f}=   G[N] d
 −     q[N] d	 +   hT a [N] d

                                                                                    
                                        
                                                                  0
                                  2πGA   211 r i      2πql jk         2πhT a l ij  2r i + r j
                                =        121    r j  −       2r j + r k  +        r i + 2r j  (5.74)
                                    12                  6                6           
                                         112      r k          r j + 2r k             0
   148   149   150   151   152   153   154   155   156   157   158