Page 148 - Fundamentals of The Finite Element Method for Heat and Fluid Flow
P. 148

STEADY STATE HEAT CONDUCTION IN MULTI-DIMENSIONS
                        140
                                                   q
                                                         j  j t     h, T a
                                                 t
                                                 k                      t i
                                                                     i
                                               k
                                   Figure 5.13  A triangular plate with linearly varying thickness

                        the thickness as a linear variation in the discretized triangular element as shown in
                        Figure 5.13. If the thickness variation is assumed to be linear, we can write
                                                   t = N i t i + N j t j + N k T k          (5.48)

                           Therefore, the stiffness matrix can be rewritten as

                                                    T                 T
                                         [K] =   [B] [D][B]d
 +   h[N] [N]dS
                                                
                S

                                                    T
                                             =   [B] [D][B](N i t i + N j t j + N k t k ) dA
                                                A

                                                       T
                                               +   h[N] [N](N i t i + N j t j + N k t k ) dl ik  (5.49)
                                                  l
                           On substitution of the various matrices and integrating (see Appendix B), we finally
                        obtain
                                                      b                    c
                                                      2                 2          
                                                       i  b i b j b i b k   i  c i c j c i c k 
                                      t i + t j + t k      2                    2
                              [K] =               k x   b i b j  b j  b j b k   + k y   c i c j  c j  c j c k  
                                        12A                     2                   2   
                                                      b i b k b j b k  b   c i c k c j c k  c
                                                                 k                   k
                                            3t i + t j t i + t j 0.0
                                                           
                                       hl ij
                                    +       t i + t j t i + 3t j 0.0                      (5.50)
                                       12
                                             0.0     0.0  0.0
                           The load term is calculated as

                                        T                              T
                            {f}=    G[N] (N i t i + N j t j + N k t k ) dA −  q[N] (N i t i + N j t j + N k t k ) dl jk
                                  A                              l jk

                                            T
                                  +    hT a [N] (N i t i + N j t j + N k t k ) dl ij        (5.51)
                                     l ij
                           Again, on integration we obtain
                                                                               
                                    GA  2t i + t j + t k  ql jk   0.0   hT a l ij  2t i + t j
                                        t i + 2t j + t k  −  2t j + t k  +   t i + 2t j     (5.52)
                                                                        6
                                    12                6                        
                                        t i + t j + 2t k    t j + 2t k         0.0
   143   144   145   146   147   148   149   150   151   152   153