Page 148 - Fundamentals of The Finite Element Method for Heat and Fluid Flow
P. 148
STEADY STATE HEAT CONDUCTION IN MULTI-DIMENSIONS
140
q
j j t h, T a
t
k t i
i
k
Figure 5.13 A triangular plate with linearly varying thickness
the thickness as a linear variation in the discretized triangular element as shown in
Figure 5.13. If the thickness variation is assumed to be linear, we can write
t = N i t i + N j t j + N k T k (5.48)
Therefore, the stiffness matrix can be rewritten as
T T
[K] = [B] [D][B]d
+ h[N] [N]dS
S
T
= [B] [D][B](N i t i + N j t j + N k t k ) dA
A
T
+ h[N] [N](N i t i + N j t j + N k t k ) dl ik (5.49)
l
On substitution of the various matrices and integrating (see Appendix B), we finally
obtain
b c
2 2
i b i b j b i b k i c i c j c i c k
t i + t j + t k 2 2
[K] = k x b i b j b j b j b k + k y c i c j c j c j c k
12A 2 2
b i b k b j b k b c i c k c j c k c
k k
3t i + t j t i + t j 0.0
hl ij
+ t i + t j t i + 3t j 0.0 (5.50)
12
0.0 0.0 0.0
The load term is calculated as
T T
{f}= G[N] (N i t i + N j t j + N k t k ) dA − q[N] (N i t i + N j t j + N k t k ) dl jk
A l jk
T
+ hT a [N] (N i t i + N j t j + N k t k ) dl ij (5.51)
l ij
Again, on integration we obtain
GA 2t i + t j + t k ql jk 0.0 hT a l ij 2t i + t j
t i + 2t j + t k − 2t j + t k + t i + 2t j (5.52)
6
12 6
t i + t j + 2t k t j + 2t k 0.0