Page 145 - Fundamentals of The Finite Element Method for Heat and Fluid Flow
P. 145

STEADY STATE HEAT CONDUCTION IN MULTI-DIMENSIONS
                                                  l       h, T a  k                           137
                                                                    T 1
                                             q
                                                                          2a


                                                  i             j
                                                        2b

                                Figure 5.11 Rectangular element with different boundary conditions


                           From Equation 3.89, Chapter 3 (with origin at k), the shape functions for a rectangular
                        element are given as
                                                            x       y

                                                  N i = 1 −     1 −
                                                           2b       2a
                                                       x       y
                                                 N j =    1 −
                                                       2b     2a
                                                       xy
                                                 N k =
                                                       4ab
                                                       y       x
                                                  N l =   1 −                               (5.35)
                                                       2a     2b
                           The gradient matrix of the shape functions is
                                                   
                                 ∂N i ∂N j ∂N k ∂N l
                                 ∂x   ∂x   ∂x   ∂x     1    −(2a − y) (2a − y) y  −y
                          [B] =                      =                                    (5.36)
                                 ∂N i ∂N j ∂N k ∂N l
                                                      4ab −(2b − x)    −x    x (2b − x)
                                  ∂y   ∂y   ∂y   ∂y
                           The stiffness matrix is given by

                                                     T                  T
                                           [K] =   [B] [D][B]dV +   h[N] [N]d	              (5.37)

                        where

                                                             k x 0
                                                      [D] =                                 (5.38)
                                                             0 k y
                           Substituting, the [B] and [D] matrices into the above equation, results in a 4 × 4matrix.
                        We leave the algebra to the readers to work out. A typical term in the matrix is
                                    2b     2a                    2b     2a
                                           k x        2                 k y         2
                                               (2a − y) dx dy +             (2b − x) dx dy
                                                                         2 2
                                            2 2
                                         16a b                        16a b
                                  0   0                        0   0
                                              2b     2a  xy
                                         +             dx dy                                (5.39)
                                            0   0  4ab
   140   141   142   143   144   145   146   147   148   149   150