Page 64 - Fundamentals of The Finite Element Method for Heat and Fluid Flow
P. 64

THE FINITE ELEMENT METHOD
                        56
                        and similarly
                           Hence,         N β = N 0 (L j ) = 1and N γ = N 0 (L j ) = 1      (3.73)
                                       N 200 = N 2 (L i )N 0 (L j )N 0 (L k ) = L i (2L i − 1) = N 1  (3.74)
                        is the shape function for node 1. Similarly,
                                               N 3 = N 020 = L j (2L j − 1) and
                                               N 5 = N 002 = L k (2L k − 1)                 (3.75)

                           For a middle node, with shape function N 110 ,wehave
                                     N 110 = N 1 (L i )N 1 (L j )N 0 (L k )
                                                   2L i − i + 1   1    2L j − i + 1

                                              1
                                          =
                                              i=1                 i=1
                                                       i                   i

                                             2L i − 1 + 1  2L j − 1 + 1
                                          =                                                 (3.76)
                                                  1            1
                           Thus,
                                                    N 2 = N 110 = 4L i L j                  (3.77)
                           Similarly,
                                                    N 4 = N 011 = 4L j L k
                                                    N 6 = N 101 = 4L k L i                  (3.78)
                           We can summarize the nodal shape functions for a quadratic triangle as follows:
                           For corner nodes,
                                     N m = L n (2L n − 1) with m = 1, 3, 5and n = i, j, k   (3.79)

                        and for nodes at centres,
                                                       N 2 = 4L i L j
                                                       N 4 = 4L j L k
                                                       N 6 = 4L k L i                       (3.80)

                           In a similar way, we can show that the interpolation functions for a 10-node cubic
                        triangle are (see Figure 3.12) as follows:
                           For corner nodes,
                                    1
                              N m =  L n (3L n − 1)(3L n − 2) with m = 1, 4, 7and n = i, j, k  (3.81)
                                    2
                           Side ij
                                                        9
                                                   N 2 =  L i L j (3L i − 1)
                                                        2
                                                        9
                                                   N 3 =  L i L j (3L j − 1)                (3.82)
                                                        2
   59   60   61   62   63   64   65   66   67   68   69