Page 67 - Fundamentals of The Finite Element Method for Heat and Fluid Flow
P. 67

THE FINITE ELEMENT METHOD
                                                 (−1,1)     h      (1,1)                       59
                                                      4           3
                                                                        z

                                                      1           2
                                                (−1,−1)            (1,−1)

                                 Figure 3.15 Non-dimensional coordinates of a rectangular element

                           We can express these shape functions in terms of length ratios x/b and y/a as
                                    1                 1     x       y     1
                              N 1 =    (b − x)(a − y) =  1 −    1 −    =  (1 − ζ)(1 − η)    (3.90)
                                   4ab                4     b       a    4
                        where
                                               −1 ≤ ζ ≤ 1and    − 1 ≤ η ≤ 1                 (3.91)

                        are the non-dimensional coordinates of an element (Figure 3.15). The shape functions can
                        also be obtained using Lagrange interpolation functions (Equation 3.30) as
                                      (x − b)(y − a)    1                1
                               N 1 =                =     (b − x)(a − y) =  (1 − ζ)(1 − η)
                                    (−b − b)(−a − a)   4ab               4
                                     (x − (−b))(y − a)   1                 1
                               N 2 =                  =     (b + x)(a − y) =  (1 + ζ)(1 − η)
                                    (b − (−b))(−a − a)  4ab                4
                                    (x − (−b))(y − (−a))   1                1
                               N 3 =                    =    (b + x)(a + y) =  (1 + ζ)(1 + η)
                                     (b − (−b))(−a − a)   4ab               4
                                     (x − b)(y − (−a))   1                 1
                               N 4 =                  =     (b − x)(a + y) =  (1 − ζ)(1 + η)  (3.92)
                                    (−b − b)(a − (−a))  4ab                4
                           In general, the shape functions can be written as
                                                  N i = (1 + ζζ i )(1 + ηη i )              (3.93)

                        where (ζ i ,η i ) are the coordinates of the node ‘i’.
                           Since the shape functions are linear in the x and y directions, they are referred to as a
                        bilinear configuration. The derivatives can be expressed as follows:
                                   ∂T   ∂N 1    ∂N 2     ∂N 3    ∂T 4
                                      =     T 1 +   T 2 +   T 3 +   T 4
                                   ∂x    ∂x      ∂x      ∂x      ∂x
                                         1
                                      =      −(a − y)T 1 + (a − y)T 2 + (a + y)T 3 − (a + y)T 4  (3.94)
                                        4ab
                           Similarly,
                                   ∂T    1
                                      =     [−(b − x)T 1 − (b + x)T 2 + (b + x)T 3 + (b − x)T 4 ]  (3.95)
                                   ∂y   4ab
   62   63   64   65   66   67   68   69   70   71   72