Page 218 - Fundamentals of Water Treatment Unit Processes : Physical, Chemical, and Biological
P. 218

Flotation                                                                                        173



            TABLE 8.1
            Parameter Values in Flotation
            Parameter       Definition                                       Value
                       Attachment coefficient  a pb ! 1.0 with effective coagulation
            a pb
                       Diameter of floc particle  10 < d b < 100 mm, with median 40 mm; A strong floc of size range 10   d p   30 mm is a goal of
            d p
                                             flocculation (Edzwald, 1995, p. 20), which may be controlled by a low alum dosage and flocculation
                                                             1
                                             intensity e.g., G   70 s , and duration, e.g., 5–10 min.
                       Diameter of bubble   40 < d p < 80 mm, with median 50 mm; a size range 20   d b   40 mm is a goal
            d b
                                                         5
                                              3
                       Bubble density       10 < N b < 2.4   10 bubbles=mL
            N b
                                                               5
                                              5
            N p        Particle density     10 < N p (reaction zone) < 10 particles=mL
                       Ratio of bubbles to particles  N b   10   N p ; B ¼ N b =N p ratio
            B ¼ N b =N p
            r p        Mass density of particles  1010 kg=m 3
                                                      3
                       Mass density of water  998.2063 kg=m at 208C, Table B.9
            r w
                                                    3
            r air      Mass density of air at STP  1.2038 kg=m at 208C, Table B.7
                                            The mass density of air may be calculated by the ideal gas law, i.e., PV ¼ nRT. Rearranging gives the molar
                                             density, i.e., n=V ¼ P=RT. Mass density is r(air) ¼ (P=RT)   MW(gas)=1000 ¼ 101,325 Pa=(8.31451 Nm=K
                                                                                             3
                                             mol   293.15 K)   (28.9641 g=mol=1000 kg=mol); r(mass) ¼ 1.204 kg air=m gas.
                                                    2
            g          Acceleration of gravity  9.8066 m=s , Appendix QR
                                                        2
            m          Dynamic viscosity of water  1.002   10  3  Nm=s , Table B.9
            References: Rows 1–7 from Edzwald (1995, p. 12); Rows 8–11 from Appendix B.
            STP is an acronym for ‘‘standard temperature and pressure.’’
                 in which                                           in which d pb is the diameter of the particle–bubble
                   r pb is the density of the particle–bubble agglomerate  agglomerate (m)
                         3
                     (kg=m )                                      3. The rise velocity, v pb , by Stoke’s law is
                                                    3
                   r p is the density of particles (1010 kg=m ); from
                     Edzwald (1995, p. 14)                                         g(r   r )d 2
                                                                                      w   pb  pb
                   d p is the diameter of floc particle (m)                    v pb ¼   18m               (8:13)
                   B is the number of attached bubbles (bubbles per
                     particle)
                                                                    v pb isthevelocityofparticle–bubbleagglomerate(m=s).
              2. Determine the equivalent spherical diameter, d pb :
                                                               Table CD8.2 gives results of computations to obtain v pb
                                h       i 1=3                  for various particle diameters, d p , for 1, 2, and 10 bubbles
                                  3
                           d pb ¼ d þ Bd 3 b          (8:12)
                                  p
                                                               attached per particle based upon Equations 8.11 through 8.13,
                   TABLE CD8.2
                   Particle Rise Velocities as Function of Number of Bubbles Attached, B a,b
                                    B n (n ¼ 1)                B n (n ¼ 2)               B n (n ¼ 10)
                   d p (mm)  r pb (g=mL)  d pb (mm)  v pb (m=h)  r pb (g=mL)  d pb (mm)  v pb (m=h)  r pb (g=mL)  d pb (mm)  v pb (m=h)

                    10       0.02      40      3.1      0.01      50      5.0     0.003      86     14.5
                    20       0.11      42      3.0      0.06      51      4.9     0.01       87     14.5
                    50       0.67      57      2.1      0.20      63      3.9     0.17       92     13.7
                   100       0.95     102      1.0      0.90     104      2.2     0.62      118     10.4
                   200       1.01     200      0        0.99     201      0.3     0.94      205      5.2
                   500       1.01     500      0        1.01     500      0       1.01      501      0
                   a
                     From Table 3, Edzwald, 1995 (reconstructed by spreadsheet computations, Table CD8.2)
                   b
                     Computations are based on Equations (8.11) ), (8.12), and (8.13) where
                     d b ¼ 40 mm
                     d p ¼ 50 mm
                     T ¼ 208C, and initial
                              3          3
                     r p ¼ 1.01 g=cm [ ¼ 1010 kg=m ]
   213   214   215   216   217   218   219   220   221   222   223