Page 350 - Fundamentals of Water Treatment Unit Processes : Physical, Chemical, and Biological
P. 350

Flocculation                                                                                     305



               10,000                                             10,000
                        Viscous dissipation  Inertial advection
                            subrange            subrange


                                     Ferric floc
                                             5
                                           •
                1,000          d(floc-ferric) =7.1  10  μm/G 2              Sludge age = 3.2 days    0.17
              d(floc) (μm)           d(floc-alum) =1.2  10  μm/G  λ(floc) max  (μm)  Sludge age = 11.9 d
                                                                                    λ(floc-3.2 days)=6000/G
                                           Alum floc
                                                   4
                                                 •
                 100                                                            λ(floc-11.9 days)=6000/G 0.37


                                Kolmogorov’s microscale                  Sludge age = 9.9 days
                                                                         λ(floc-9.9 days)=6000/G  0.35
                  10                                               1,000
                    10                 100               1000          10                                    100
                                                                                           –1
                                        –1
             (a)                      G (s )                   (b)                      G (s )
            FIGURE 11.9  Stable floc size as affected by G (data points not shown). (a) Alum and ferric floc—stable size (b) Activated sludge floc—
            maximum length. (Adapted from Parker, D.S. et al., J. Environ. Eng. Division, ASCE, 98(SA1), 92, 1972.)


                      TABLE 11.4
                      Experimental Data for g and G, Equation 11.12
                                                               1
                      Investigator                g         G (s )                Type of Floc
                      Argaman and Kaufman (1970)  1         30–120    Aluminum hydroxide þ kaolinite in distilled water
                      Camp (1968)              0.74        180–1000   Aluminum hydroxide þ kaolinite þ NaCl
                      Hoppe et al. (1977)      1.18   0.09  75–250    Polyacrylamide flocs þ kaolinite þ CaCl 2
                      Lagvankar and Gemmell (1968)  0.67    10–40     Iron hydroxide flocs þ kaolinite in distilled water
                      Leentvaar and Rehbun (1983)  0.59     20–150    Iron hydroxide flocs þ domestic wastewater
                                               1.1          20–150    Iron hydroxide flocs þ tap water
                      Parker et al. (1971)     0.36         10–100    Activated sludge
                      Stevenson (1972)         0.80        3.8–40     Iron hydroxide flocs þ ground water
                      François (1987b, p. 1025)  0.3–0.5    34–1398   Aluminum hydroxide þ kaolinite

                      Source: François, R.J., Water Res., 21(9), 1023, 1987b.
                      . Argaman, Y. and Kaufman, W. J., Turbulence and Flocculation, Journal of the Sanitary Engineering Division, American
                        Society of Civil Engineers, 96(SA2):223–241, 1970.
                      . Camp, T. R., Floc volume concentration, Journal of the American Water Works Association, 60(6):656–673, June, 1968.
                      . Hoppe, H., Tröger. W., and Winkler, F., Das Kinetische Modell der Orthokinetischen Phase der Flocking am Beispiel Einer
                        Flockulierten Kaolinsuspension, Wiss. Z. Tech. Hochsch. Chem. Leuna-Merseb., 19:399–408, 1977.
                      . Lagvankar, A. L. and Gemmell, R. S., A size-density relationship for flocs, Journal of the American Water Works
                        Association, 59(9):1040–1046, September, 1968.
                      . Leentvaar, J. and Rehbun, M., Strength of ferric hydroxide flocs, Water Research, 17:895–902, 1983.
                      . Parker, D. S., Kaufman, W. J., and Jenkins, D., Physical conditioning of activated sludge floc, Journal Water Pollution
                        Control Federation, 43:1817–1833, 1971.
                      . Stevenson, D. G., Flocculation and floc behavior, Journal of the Institution of Water Engineers, 3:155–169, 1972.
                      . François, R. J., Strength of aluminum hydroxide flocs, Water Research, 21(9):1023–1030, 1987b.




            involves a lectin-like protein attaching to the bacteria on one  11.4.3 FLOCCULENTS
            side and a polysaccharide chain on the other, with cations
                                                               A polymer (Box 11.2) is sometimes added as a flocculent,
            providing bridging between polysaccharide chains, between
                                                               subsequent to rapid mix, in order to create bridging between
            lectins and lectins, and between lectins and polysaccharides.
                                                               floc particles as they develop within the flocculation basin; the
            The divalent cations associate with the negatively charged
                                                               purpose is to strengthen the floc and to facilitate growth to a
            groups on the molecules mentioned.
   345   346   347   348   349   350   351   352   353   354   355