Page 23 - Handbook of Battery Materials
P. 23
XXII Contents
22.3 Zinc–Air Batteries 767
22.3.1 Primary Zinc–Air Batteries 768
22.3.2 Rechargeable Zinc–Air Batteries 770
22.3.2.1 Electrically Rechargeable Zinc–Air Batteries 770
22.3.2.2 Mechanically rechargeable Zinc–Air Batteries 772
22.3.3 Hydraulically Rechargeable Zinc–Air Batteries 772
22.4 Lithium–Air Batteries 773
22.4.1 Lithium–Air Batteries Using a Nonaqueous Electrolyte 775
22.4.2 Lithium–Air Batteries Using Protected Lithium Electrodes 781
22.4.3 Lithium–Air Batteries Using an Ionic Liquid Electrolyte 783
22.4.4 Lithium–Air Batteries Using Solid Electrolytes 784
22.4.5 Rechargeable Lithium–Air Batteries 785
22.5 Other–Air Batteries 789
22.6 Conclusions 792
Acknowledgment 792
References 792
23 Catalysts and Membranes for New Batteries 797
Chaitanya K. Narula
23.1 Introduction 797
23.2 Catalysts 798
23.2.1 Catalysts in Metal–Air Batteries 798
23.2.2 Catalysts in Lithium–Thionyl Chloride Batteries 800
23.2.3 Catalysts in Other Batteries 800
23.3 Separators 802
23.3.1 Separator Types 802
23.3.2 Separators for Batteries Based on Nonaqueous Electrolytes 803
23.3.2.1 Primary Batteries Based on Lithium 803
23.3.2.2 Secondary Batteries Based on Lithium 804
23.3.2.2.1 The Lithium-Ion Battery 804
23.3.2.2.2 Lithium Polymer Battery 805
23.3.2.2.3 Lithium-Ion Gel Polymer Battery 805
23.3.3 Separators for Batteries Based on Aqueous Electrolytes 806
23.4 Future Directions 807
References 808
24 Lithium–Sulfur Batteries 811
Zengcai Liu, Wujun Fu, and Chengdu Liang
24.1 Introduction 811
24.2 Polysulfide Shuttle and Capacity-Fading Mechanisms 812
24.2.1 Origin of Polysulfide Shuttle 813
24.2.2 Influence of Polysulfide Shuttle on Charge Profile 814
24.2.3 Effect of Polylsulfide Shuttle on Charge–Discharge
Capacities 815
24.2.4 Capacit-Fading Mechanism 816