Page 236 - Handbook of Civil Engineering Calculations, Second Edition
P. 236

REINFORCED CONCRETE                  2.21

                              Calculation Procedure:

                              1. Record the pertinent beam data
                                                                                        2
                              Thus f c 
  2500 lb/sq.in. (17,237.5 kPa);   n   10; A s   2.20 sq.in. (14.194 cm ); nA s
                                              2
                              22.0 sq.in. (141.94 cm ). Then M   62,000(12)   744,000 in.·lb (84,057.1 N·m).
                              2. Transform the given section to an equivalent homogeneous
                              section, as in Fig. 13b
                              3. Locate the neutral axis of the member
                              The neutral axis coincides with the centroidal axis of the transformed section. To locate
                              the neutral axis, set the static moment of the transformed area with respect to its centroidal
                                                 2
                              axis equal to zero: 12(kd) /2   22.0(19.5   kd)   0; kd   6.82; d   kd   12.68 in.
                              (322.072 mm).
                              4. Calculate the moment of inertia of the transformed section
                              Then evaluate the flexural stresses by applying the stress equation: I   ( /3)(12)(6.82)
                                                                                            3
                                                                                  1
                                      2
                                                4
                                                            4
                              22.0(12.68)   4806 in (200,040.6 cm ); f c   Mkd/I   744,000(6.82)/4806   1060
                              lb/sq.in. (7308.7 kPa); f s ,   10(744,000)(12.68)/4806   19,600 lb/sq.in.
                              5. Alternatively, evaluate the stresses by computing the resultant
                              forces C and T
                              Thus jd   19.5   6.82/3   17.23 in. (437.642 mm); C   T   M/jd   744,000/17.23
                              43,200 lb (192,153.6 N). But C   /2f c (6.82)12;   f c   1060 lb/sq.in. (7308.7 kPa); and T
                                                      1
                              2.20f s ;   f s   19,600 lb/sq.in. (135,142 kPa). This concludes part a of the solution. The
                              next step constitutes the solution to part b.
                              6. Compute pn and then apply the basic equations
                              in the proper sequence
                              Thus p   A s /(bd)   2.20/[12(19.5)]   0.00940; pn   0.0940. Then by Eq. 30, k   [0.188
                                   2 0.5
                              (0.094) ]    0.094    0.350. By Eq. 22,  j   1    0.350/3    0.883. By Eq. 23,  f c
                                    2
                                                                  2
                              2M/(kjbd )    2(744,000)/[0.350(0.883)(12)(19.5) ]    1060 lb/sq.in. (7308.7 kPa). By
                              Eq. 25, f s   M/(A s jd)   744,000/[2.20(0.883)(19.5)]   19,600 lb/sq.in. (135,142 kPa).




















                                       FIGURE 13
   231   232   233   234   235   236   237   238   239   240   241