Page 189 - Handbook of Materials Failure Analysis
P. 189
References 185
REFERENCES
[1] Banerjee S, Chakravartty JK, Dubey JS, Singh RN, Srivastava D. Role of basic research
in the development of zirconium alloys for nuclear applications, In: De PK, editor. Proc.
international symposium on advances in zirconium, Mumbai, India; 2002. p. 40–55.
[2] Chow CK, Simpson LA. Determination of the fracture toughness of irradiated reactor
pressure tubes using curved compact specimen, In: Read DT, Reed R, editors. Proc.
18th symposium on fracture mechanics. ASTM STP 945; 1985. p. 419–39.
[3] Ganguly C. Advances in zirconium technology for nuclear reactor application,
In: De PK, editor. Proc. international symposium on advances in zirconium, Mumbai,
India; 2002. p. 1–27.
[4] Arsene S, Bai J. New approach to measure the transverse properties of structural tubing
by a ring test. ASTM J Test Eval 1996;24(6):386–91.
[5] Josefsson B, Grigoriev V. Modified ring tensile testing and a new method for fracture
toughness testing of irradiated cladding. Studsvik Material AB, S-61182, Nykoping,
Sweden; 1996.
[6] Seok CS, Bae BK, Koo JM, Murty KL. The properties of the ring and burst creep of
ZIRLO cladding. Eng Fail Anal 2006;13:389–97.
[7] Lee KW, Kim SK, Kim KT, Hong SI. Ductility and strain rate sensitivity of Zircaloy-4
nuclear fuel claddings. J Nucl Mater 2001;295:21–6.
[8] Leclercq S, Parrot A, Leroy M. Failure characteristics of cladding tubes under RIA con-
ditions. Nucl Eng Des 2008;238(9):2206–18.
[9] Chung H, Kassner T. Cladding metallurgy and fracture behavior during reactivity-
initiated accidents at high burn-up. Nucl Eng Des 1998;186:411–27.
[10] Samal MK, Balakrishnan KS, Parashar J, Tiwari GP, Anantharaman S. Estimation of ten-
sile behavior of zirconium alloy pressure tubes using ring tensile test and finite element
analysis. J Mech Eng Sci 2013;227(6):1177–86.
[11] Samal MK, Balakrishnan KS, Parashar J, Tiwari GP. Investigation of deformation behav-
iour of ring-tensile specimens machined from pressure tubes of Indian PHWR. Trans
Indian Inst Met 2014;67(2):167–76.
[12] Balakrishnan KS, Samal MK, Parashar J, Tiwari GP, Anantharaman S. Suitability of
miniature tensile specimens for estimating the mechanical property data of pressure
tubes—an assessment. Trans Indian Inst Met 2014;67(1):47–55.
[13] Samal MK, Balakrishnan KS, Balakrishnan S. A practical approach to evaluate stress-
strain behavior of remotely handled pressure tubes of nuclear reactors using ring tension
test. Trans Indian Inst Met 2014;68:299–310. http://dx.doi.org/10.1007/s12666-014-
0461-0.
[14] Grigoriev V, Josefsson A, Lind B, Rosborg A. Pin loading tension test for evaluation of
evaluation of thin walled tubular material. Scr Metall Mater 1995;33:109–14.
[15] Grigoriev V, Jakobsson R. Application of the Pin Loading Tension test to measurements
of delayed hydride cracking velocity in Zircaloy cladding. SKI Rapport 00:57, Studsvik
Nuclear AB, SE-611 82 Nyk€ oping, Sweden; 2000.
[16] Grigoriev V, Jakobsson R. Delayed hydrogen cracking velocity and j-integral measure-
ments on irradiated BWR cladding. J ASTM Int 2005;2(8):1–16.
[17] Sainte Catherine C, Le Boulch D, Carassou S, Ramasubramanian N, Lemaignan C. An
internal conical mandrel technique for fracture toughness measurement in nuclear fuel
cladding. ASTM J Test Eval 2006;35(5):373–82.