Page 189 - Hybrid-Renewable Energy Systems in Microgrids
P. 189

Vsq=RsIsq+wsψsd+1wb.dψsqdt


         170                                 Hybrid-Renewable Energy Systems in Microgrids


                                1  d ψ sq
             V sq  = R I  + ωψ sd  +  .                                 (9.10)
                   ssq
                         s
 Vrd=RrIrd−w 2 ψrq+1wb.dψrddt  ω b  dt
                                1  d ψ
             V rd  = R I  − ωψ +  .  rd                                 (9.11)
                   rrd
                               ω
                            rq
                          2
                                 b  dt
                                1  d ψ rq
 Vrq=RrIrq+w 2 ψrd+1wb.dψrqdt  V rq  = R I  + ωψ rd  +  .               (9.12)
                         2
                               ω
                   rrq
                                b   dt
 ψs=LsIs+LmIr  ψ = LI  + LI                                             (9.13)
                   s s
               s
                        m r
 ψr=LmIs+LrIr  ψ = LI  + LI                                             (9.14)
               r
                   m s
                         r r
 ⊥ r w b d I r d d t = − R ´ r I r d + R s L m L s 2 ψ s d − L
 mLswrψsq+L´rw Irq−LmLsVsd
 2
                  L
 Te=LmLsψsqIrd−ψsdIrq  T  =  m  ψ (  I  − ψ I  )                        (9.15)
              e       sq rd  sd rq
                  L s
           Using Eqs. (9.9–9.15), state space representation of IG can be written as a function
         of state variables:
              1  d ψ sd  R s    RL m
                                 s
 1wbdψsddt=−RsLsψsd+RsLmLmIrd+wsψsq+Vsd  ω b  dt  =−  L s ψ sd  +  L m  I rd  + ω ψ sq  + V sd  (9.16)
                                          s
 1wbdψsqdt=−RsLsψsq+RsLmLmIrq−wsψsd  1  d ψ sq  =−  R s  ψ  +  RL m  I  − ω ψ  + V  (9.17)
                                 s
 +Vsq        ω b  dt    L s  sq  L m  rq  s  sd  sq

                        ´
             ´  dI rd  =− RI  +  RL m ψ  −  L m  ω ψ  ´  ω I  −  L m  V  (9.18)
             L r
                               s
             ω b  dt     r  rd  L 2 s  sd  L s  r  sq  + Lr  2  rq  L s  sd
             L ´  r  dI rq  ´  RL m    L m      ´       L m
                               s
 ⊥ r w b d I r q d t = − R ´ r I r q + R s L m L s 2 ψ s q + L  ω  dt  =− RI rq  +  L 2  ψ +  L  ω ψ − Lr  ω I rd  −  L  V sq  (9.19)
                        r
                                             sd
                                                    2
                                           r
                                   sq
 mLswrψsd−L´rw Ird−LmLsVsq  b   s       s                 s
 2
                         2
 ⊥´r=Rr+Lm2Rs/Ls2  here, Ŕ = R r  + L R /  L 2 s
                 r
                         m
                           s
                       2
 ⊥r=Lr−Lm2/Ls  Ĺ r  = L r  − L /  L s
                       m
         where V s  and V r  are stator and rotor voltage, L m  is the mutual inductance, I rd  and I rq
         are the d-axis and q-axis rotor current, L s  and L r  are stator and rotor self-inductance,
   184   185   186   187   188   189   190   191   192   193   194