Page 279 - Industrial Process Plant Construction Estimating and Man Hour Analysis
P. 279

258 Industrial process plant construction estimating and man-hour analysis



              TABLE 12.8.1 Regression analysis of illustrative man-hour data to find
              intercept a and slope b
              Units (x)                        Hours (Y)
              1                                189.7
              2                                168.1
              3                                155.1
              4                                153.6
              Unit            MH               X 5 log x           Y 5 log y
              X               Y
              1               189.7            0.0000              2.2780
              2               168.1            0.3010              2.2256
              3               155.1            0.4771              2.1907
              4               153.6            0.6021              2.1863
                                               1.3802              8.8806




               Given: y ¼ ax b transformed to log y ¼ log a + b log x
                           ^
               which is of the form y ¼ a + bx.
               Let y ¼ log y, a ¼ log an intercept, b ¼ b slope, and n ¼ sample size.
               Linear regression is a method for fitting linear equations of the form y ¼ a +
            bx to a set of x and y data pairs.



              Example 12.8.2
              Historical data for project 1; four Waste Heat Boiler Units have been erected with
              no loss of learning between units. Fit U model to the following historical data: hours
              = Y/100 (Table 12.8.2).



                             TABLE 12.8.2 Logarithms for x and y
                             X 5 log X        Y 5 log y
                             0.0000           2.2840
                             0.3010           2.2324
                             0.4771           2.1980
                             0.6021           2.1937
   274   275   276   277   278   279   280   281   282   283   284